1 An optimization problem

The Acme Widget Company has found that if widgets are priced at $\$ 170$, then 16000 will be sold. They have also found that for every increase of $\$ 14$, there will be 400 fewer widgets sold. The cost of producing each widget is $\$ 93.5$. The fixed costs for the Acme Widget Company are $\$ 38000$.

1. What is the cost function?

2 . What is the revenue function?
3. The profit function?
4. What is the optimal quantity to maximize profit? (They are interested in quantity q)
The technique is always the same:
Demand - Revenue - Cost - Profit - Interval - Find global max of Profit in interval.

Let's go sentence by sentence:
The Acme Widget Company has found that if widgets are priced at $\$ 170$, then 16000 will be sold.
$p=170, q=16000$ This gives me a point: $(170,16000)$
They have also found that for every increase of $\$ 14$, there will be 400 fewer widgets sold.
$p=170+14, q=16000-400$. This gives us another point: $(184,15600)$
These two sentences talk about demand.
What kind of function do you think this particular demand is?

$$
\begin{aligned}
& y-y_{0}=\operatorname{slope}\left(x-x_{0}\right) \\
& q-q_{0}=\operatorname{slope}\left(p-p_{0}\right) \\
& \quad q-16000=\operatorname{slope}(p-170)
\end{aligned}
$$

Let's find the slope from the two points: $\frac{16000-15600}{170-184}=\frac{400}{-14} \approx-28.57$

$$
q-16000=-28.57(p-170)
$$

The cost of producing each widget is $\$ 93.5$. The fixed costs for the Acme Widget Company are $\$ 38000$.

$$
\begin{aligned}
& C o s t=F C+T V C(q) \\
& C(q)=38000+93.5 q
\end{aligned}
$$

We need the revenue

$$
\begin{aligned}
\text { Revenue } & =\overbrace{\text { Units }}^{q} \times \overbrace{\text { Price }}^{p} \\
R(q) & =q \times D(q)
\end{aligned}
$$

We need the demand as a function of q.

$$
\begin{aligned}
q-16000 & =-28.57(p-170) \\
\frac{q-16000}{-28.57} & =p-170 \\
p-170 & =\frac{q-16000}{-28.57} \\
p & =\underbrace{170-\frac{q-16000}{28.57}}_{D(q)}
\end{aligned}
$$

Long story short:

$$
\begin{aligned}
R(q) & =q\left(170-\frac{q-16000}{28.57}\right) \\
& =q(170-0.035 q+560.03) \\
& =q(730.03-0.035 q) \\
R(q) & =730.03 q-0.035 q^{2}
\end{aligned}
$$

We need the profit now:

$$
\begin{aligned}
\text { Profit } & =\text { Revenue }- \text { Cost } \\
P(q) & =\left(730.03 q-0.035 q^{2}\right)-(38000+93.5 q) \\
& =730.03 q-0.035 q^{2}-38000-93.5 q \\
P(q) & =636.53 q-0.035 q^{2}-38000
\end{aligned}
$$

We need an interval now:
What is the smallest possible q ? $\quad(q=0)$ What is the largest possible q ? ($q=16000$)

We have now the interval $[0,16000]$
We need at this point to find the maximum value of the function $P(q)=$ $636.53 q-0.035 q^{2}-38000$ over the interval [0,16000].

Step\#1: Candidates.

$$
q=0, q=16000, q=9093
$$

Critical points of $P(q)$ inside of the interval.

$$
\begin{aligned}
P^{\prime}(q) & =0 \\
636.53-0.035 \cdot 2 q & =0 \\
636.53-0.07 q & =0 \\
q & =\frac{636.53}{0.07} \approx 9,093.28
\end{aligned}
$$

Step\#2: Evaluate P on those candidates.

$$
\begin{aligned}
P(0) & =-\$ 38000 \\
P(16000) & =\$ 1186480 \\
P(9093) & =\$ 2856074
\end{aligned}
$$

The maximum profit will happen at the production level of 9093 widgets. At that level we make $\$ 2,856,074$.something.

2 Another optimization problem.

The cost, in dollars, to produce q designer dog leashes is $C(q)=9 q+2$, and the price-demand function, in dollars per leash, is $p=D(q)=81-2 q$. Find the number of leashes that will give us maximum profit.

Demand-Cost-Revenue-Profit-interval-maximize
Demand: $D(q)=81-2 q$.
Cost: $C(q)=9 q+2$.
Revenue: $R(q)=q \times p=q \times D(q)=q(81-2 q)=81 q-2 q^{2}$.
Profit: $P(q)=R(q)-C(q)=\left(81 q-2 q^{2}\right)-(9 q+2)=81 q-2 q^{2}-9 q-2=$ $72 q-2 q^{2}-2$.

Interval: minimum number of leashes? $q=0$
Interval: maximum number of leashes? The demand function tells you that.

$$
\begin{aligned}
D(q) & =0 \\
81-2 q & =0 \\
q & =\frac{81}{2} \approx 40.5
\end{aligned}
$$

The interval is $[0,40]$
Time to do optimization: Find the absolute max of $P(q)=72 q-2 q^{2}-2$ over the interval [0,40].

Step $\# 1$: Candidates! $q=0, q=40, q=18$.

$$
\begin{aligned}
P^{\prime}(q) & =0 \\
72-4 q & =0 \\
q & =\frac{72}{4}=18
\end{aligned}
$$

Step \#2: Evaluate!

$$
\begin{aligned}
P(0) & =-\$ 2 \\
P(40) & =-\$ 322 \\
P(18) & =\$ 646
\end{aligned}
$$

Answer: We must make 18 leashes to maximize our profit. At that level of production, the profit is $\$ 646$.

The price per unit: This comes from the demand function. (price per unit, given number of units demanded)

$$
\begin{aligned}
D(q) & =81-2 q \\
D(18) & =81-2 \cdot 18=\$ 45
\end{aligned}
$$

3 Intervals of increase/decrease and concavity.

Find the intervals of increase/decrease and concavity of the function $g(x)=$ $4 x^{3}-6 x^{2}-240 x$.

Step $\# 1$: sign chart for the derivative for increase/decrease.
Step $\# 2$: sign chart for the second derivative for concavity.

$$
\begin{aligned}
g^{\prime}(x) & =12 x^{2}-12 x-240 \\
g^{\prime}(x) & =0 \\
12 x^{2}-12 x-240 & =0 \\
12\left(x^{2}-x-20\right) & =0 \\
12(x-5)(x+4) & =0
\end{aligned}
$$

We've found that g is increasing at $(-\infty,-4) \cup(5, \infty)$. The function g is decreasing in $(-4,5)$.

There is a local max at $x=-4$. There is a local min at $x=5$.

$$
\begin{aligned}
g^{\prime \prime}(x) & =24 x-12 \\
g^{\prime \prime}(x) & =0 \\
24 x-12 & =0 \\
x & =0.5
\end{aligned}
$$

Concavity up: $g^{\prime \prime}(x)>0$.

$$
\begin{aligned}
24 x-12 & >0 \\
x & >0.5
\end{aligned}
$$

Concavity down: $g^{\prime \prime}(x)<0$.

$$
\begin{aligned}
24 x-12 & <0 \\
x & <0.5
\end{aligned}
$$

4 Absolute max and min

Find the absolute max and absolute min of $f(x)=4-2 x^{2}$ over the interval $-5 \leq x \leq 1$.

Step \#1: Candidates! $x=-5, x=1, x=0$.

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
-4 x & =0 \\
x & =0
\end{aligned}
$$

Step \#2: Evaluate!

$$
\begin{aligned}
f(-5) & =-46 \\
f(1) & =2 \\
f(0) & =4
\end{aligned}
$$

The absolute maximum is at $x=0$. Its value is 4 .
The absolute minimum is at $x=-5$. Its value is -46 .

5 Average cost, Average Revenue, Average Profit

The cost of producing q watches is given by $C(q)=12000+340 q$. What is the average cost of producing 300 watches?

Average Cost is $A C(q)=\frac{C(q)}{q}$.

$$
A C(300)=\frac{C(300)}{300}=\frac{12000+340 \cdot 300}{300}=\$ 380
$$

6 Interpretation

If $C(x)$ is the total cost, in millions, of producing x thousand items, interpret $C^{\prime}(4)=2$.

At the production level of 4 thousand items, the total cost of production increases at the rate of 2 million dollars per each extra thousand items.

Another one:
If $R(x)$ is the revenue of selling x thousand items, intepret $R(3)=4$ and $R^{\prime}(3)=-1$.
$R(3)=4$. The revenue obtained by selling 3 thousand items is 4 million dollars.

$$
R^{\prime}(3)=-1
$$

At the production level of 3 thousand items, the revenue of sales decreases at the rate of 1 million dollars per each extra thousand items.

7 Marginal Cost/Revenue/Profit.

It costs $C(x)=\sqrt{x}$ dollars to produce x golf balls. What is the marginal production cost to make a golf ball? What is the marginal production cost when $x=25$? when $x=100$? (Include units.)

$$
\begin{aligned}
M C(1) & =C^{\prime}(1)=\frac{1}{2} 1^{-1 / 2}=\frac{1}{2}=\$ 0.5 / \text { ball }=50 \text { cents } / \text { ball } \\
M C(25) & =C^{\prime}(25)=\frac{1}{2}(25)^{-1 / 2}=\frac{1}{2} \cdot \frac{1}{25^{1 / 2}}=\frac{1}{2} \cdot \frac{1}{\sqrt{25}}=\frac{1}{10}=\$ 0.1 / \text { ball }=10 \text { cents } / \text { ball } \\
M C(100) & =C^{\prime}(100)=\frac{1}{2}(100)^{-1 / 2}=\frac{1}{20}=\$ 0.05 / \text { ball }=5 \text { cents } / \text { ball } \\
\quad(\text { because } & \left.C^{\prime}(x)=\frac{1}{2} x^{-1 / 2}\right)
\end{aligned}
$$

8 Punch line

A baseball team plays in he stadium that holds 52000 spectators. With the ticket price at $\$ 11$ the average attendance has been 20000 . When the price dropped to $\$ 8$, the average attendance rose to 26000 . Find the demand function $D(q)$, where q is the number of the spectators. Assume $D(q)$ is linear.
$p=$ price, $q=$ spectators
When $p=11, q=20000 .(\overbrace{20000}^{q} \overbrace{11}^{p})$ or $(\overbrace{11}^{p}, \overbrace{20000}^{q})$
When $p=8, q=26000 .(26000,8)$ or $(8,26000)$

$$
\begin{aligned}
& y-y_{0}=\operatorname{slope}\left(x-x_{0}\right) \\
& p-p_{0}=\operatorname{slope}\left(q-q_{0}\right) \\
& p-11=\operatorname{slope}(q-20000)
\end{aligned}
$$

We need the slope $\frac{11-8}{20000-26000}=\frac{3}{-6000}=-0.0005$
Long story short:

$$
p-11=-0.0005(q-20000)
$$

They want you to write p as a function of q. (So, solve for p in the previous equation)

$$
\begin{aligned}
p & =11-0.0005(q-20000) \\
p=D(q) & =11-0.0005 q+10=21-0.0005 q
\end{aligned}
$$

We need to maximize revenue.

$$
\begin{aligned}
\text { Revenue } & =\text { units } \times \text { price } \\
\qquad R(q) & =q \times D(q)=q(21-0.0005 q)=21 q-0.0005 q^{2}
\end{aligned}
$$

I am missing the... interval!!!!!
What is the minimun number of spectators? What is the maximum number of spectators?

The maximum number gotta be 52,000 . We could go here with a minimum of 0 or a minimum of 20,000 spectators.

My interval here is [20000, 52000]
Find the maximum of $R(q)=21 q-0.0005 q^{2}$ on the interval [20000, 52000]
Step $\# 1$. Candidates! $q=20000, q=52000, q=21000$

$$
\begin{aligned}
R^{\prime}(q) & =0 \\
21-0.001 q & =0 \\
q & =\frac{21}{0.001}=21000
\end{aligned}
$$

Step \#2. Evaluate!

$$
\begin{aligned}
& R(20000)=\$ 220,000 \\
& R(21000)=\$ 220,500 \\
& R(52000)=-\$ 260,000
\end{aligned}
$$

The maximum revenue occurs when the number of spectators is 21,000 . The question is "what is the price of the ticket at that stage?" The demand gives you that information:

$$
\begin{aligned}
& p=D(q)=21-0.0005 q \\
& p=D(21000)=21-0.0005 \cdot 21000=\$ 10.50
\end{aligned}
$$

