Functions

Problem. The number of cubic yards of dirt, D, needed to cover a garden with area a square feet is given by $D=g(a)$.
a. A garden with area $5000 \mathrm{ft}^{2}$ requires 50 cubic yards of dirt. Express this information in terms of the function g.
b. Explain the meaning of the statement $g(100)=1$.
$D=$ cubic yards of dirt.
$a=$ Area of a garden in square feet.

$$
50=g(50000)
$$

$g(100)=1$. What does this mean?

$$
\begin{aligned}
D & =g(a) \\
1 & =g(100)
\end{aligned}
$$

This means: For a garden with area $100 \mathrm{ft}^{2}$, we require 1 cubic yard of dirt.
Problem. Evaluate $f(3)$ and solve $f(x)=1$.

x	0	1	2	3	4	5	6	7	8	9
$f(x)$	74	28	1	53	56	3	36	45	14	47

Problem. Evaluate $f(2)$ for $f(x)=8 x^{2}-7 x+3$.

$$
\begin{aligned}
f(2) & =8(2)^{2}-7(2)+3 \\
& =8 \cdot 4-14+3 \\
& =32-14+3=\text { whatever }
\end{aligned}
$$

Problem. Find the domain of $f(x)=\frac{6}{x-8}$.
Possible answers: $x \neq 8 .(-\infty, 8) \cup(8, \infty)$, "all reals except $x=8$ "

Linear Functions

Problem. At noon, a barista notices she has $\$ 20$ in her tip jar. If she makes an average of $\$ 0.50$ from each customer, how much will she have in her tip jar if she serves n more customers during her shift?

Look! This is a linear function! (the key here is the "rate of change" or slope: $\$ 0.50$ from each customer)
$T=$ tips (in dollars)
$n=$ customers

$$
\begin{aligned}
& T=f(n)=\underbrace{b}_{\text {initial }}+\underbrace{m}_{\text {slope }} \cdot n \\
& T=20+0.50 n
\end{aligned}
$$

Problem. The cost in dollars to produce q tons of an item is given by the function $C=100+20 q$. What are the units of the 20 ?

$$
\underbrace{C}_{\$}=\underbrace{100}_{\$}+\underbrace{20}_{\$ / \text { tons }} \underbrace{q}_{\text {tons }}
$$

Another way to do this: $C=\underbrace{100}_{\text {initial }}+\underbrace{20}_{\text {slope }} q$
The slope (aka rate of change) is always a... er... rate? (it needs to be a fraction)

Problem. Find the equation of a line that satisfies $f(-1)=4$ and $f(5)=1$.
Two points are enough to give us the equation of a line. $(\underbrace{-1}, \underbrace{4}) \cdot(5,1)$
I like to use the point-slope equation of a line

$$
\begin{aligned}
y-y_{0} & =\text { slope } \cdot\left(x-x_{0}\right) \\
y-4 & =\text { slope } \cdot(x+1)
\end{aligned}
$$

To compute the slope we can do $\frac{1-4}{5-(-1)}=\frac{-3}{6}=-0.5$.
Long story short: $y-4=-0.5(x+1)$.
If you decide to use the other point, you will get instead

$$
y-1=-0.5(x-5)
$$

They look different, but they are the same!

Problem. A car rental company offers two plans for renting a car.
Plan A: 30 dollars per day and 18 cents per mile
Plan B: 50 dollars per day with free unlimited mileage
How many miles would you need to drive for plan B to save you money?
Plan A. $P=f(x)=b+m \cdot x . P=\$ \$ \$ \$ \$, x=$ mileage.

$$
P=f(x)=30+0.18 x
$$

Plan B. $P=f(x)=50$

$$
\begin{cases}P & =30+0.18 x \\ P & =50\end{cases}
$$

$$
\begin{aligned}
30+0.18 x & =50 \\
0.18 x & =50-30 \\
0.18 x & =20 \\
x & =20 / 0.18 \approx 111.11(\text { miles })
\end{aligned}
$$

Quadratic functions, polynomials

Problem. I will give you the graph of a parabola, and ask that you find the equation. In example 6 from the book, the parabola is upside down.

First, find your vertex. Second, find your intersection with the y-axis. Third, write the parabola in the form

$$
y=f(x)=a(x-p)^{2}+q
$$

The vertex is always (p, q). You have to find the value of a from the information of the y-intersect. For example, in problem 6 , the vertex is at... $p=-2, q=3$.

$$
y=f(x)=a(x+2)^{2}+3
$$

At this point, evaluate this function at zero: $f(0)=a(0+2)^{2}+3=4 a+3$
You want that this expression is equal to the y-intersect! Solve in this case

$$
\begin{aligned}
4 a+3 & =2 \\
4 a & =-1 \\
a & =-1 / 4=-0.25
\end{aligned}
$$

Long story short: $y=-0.25(x+2)^{2}+3$
Problem. Solve $(x+3)(x+1)^{2}(x-4)>0$

Exponential Functions and Logarithms

Problem. The amount, A (in mg), of a drug in the body is 25 when it first enters the system and decreases by 12% each hour. Find a formula for A as a function of t, in hours after the drug enters the system.

This seems to be an exponential function (I know because of the \%). They are giving me the percentage rate of growth or decay (in this case decay).

$$
\begin{aligned}
r & =-0.12 \\
P_{0} & =25(m g)
\end{aligned}
$$

We have everything that we need. We have to write $P=P_{0}(1+r)^{t}$.

$$
P=25(1-0.12)^{t}=25(0.88)^{t}=25 \cdot 88^{t}
$$

Problem. Follow up question: When will the amount of drug in your system go below 5 mg ?

For this question, all we have to do is solve the equation

$$
\begin{aligned}
P(t) & =5 \\
25(0.88)^{t} & =5 \\
(0.88)^{t} & =\frac{5}{25}=0.2 \\
0.88^{t} & =0.2 \\
t & =\log _{0.88} 0.2 \\
t & \approx 12.5901233256
\end{aligned}
$$

another way from the last expression:

$$
\begin{aligned}
0.88^{t} & =0.2 \\
\log 0.88^{t} & =\log 0.2 \\
t \cdot \log 0.88 & =\log 0.2 \\
t & =\frac{\log 0.2}{\log 0.88} \approx 12.5901233256
\end{aligned}
$$

The amount of drug in your system will go below 5 mg in a little more than 12 hours and a half. (or if you prefer, just answer "in 12.59 hours")

Problem. Solve for t in the following equation:

$$
\begin{aligned}
200 & =30 e^{0.15 t} \\
30 e^{0.15 t} & =200 \\
e^{0.15 t} & =\frac{20}{3} \\
0.15 t & =\log _{e} \frac{20}{3}=\ln \frac{20}{3} \\
0.15 t & =1.897 \\
t & =1.897 / 0.15 \\
t & =12.647
\end{aligned}
$$

