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Numerical Linear Algebra
The term Numerical Linear Algebra refers to the use of matrices to solve 
computational science problems. In this chapter, we start by learning how to 
construct these objects effectively in Python. We make an emphasis on importing 
large sparse matrices from repositories online. We then proceed to reviewing basic 
manipulation and operations on them. The next step is a study of the different matrix 
functions implemented in SciPy. We continue on to exploring different factorizations 
for the solution of matrix equations, and for the computation of eigenvalues and 
their corresponding eigenvectors.

Motivation
The following image shows a graph that represents a series of web pages (numbered 
from 1 to 8):
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An arrow from a node to another indicates the existence of a link from the web page, 
represented by the sending node, to the page represented by the receiving node. For 
example, the arrow from node 2 to node 1 indicates that there is a link in web page 2 
pointing to web page 1. Notice how web page 4 has two outer links (to pages 2 and 
8), and there are three pages that link to web page 4 (pages 2, 6, and 7). The pages 
represented by nodes 2, 4, and 8 seem to be the most popular at first sight.

Is there a mathematical way to actually express the popularity of a web page within 
a network? Researchers at Google came up with the idea of a PageRank to roughly 
estimate this concept by counting the number and quality of links to a page. It goes 
like this:

• We construct _transition matrix_ of this graph T={a[i,j]} in the 
following fashion: the entry a[i,j] is 1/k if there is a link from web page i 
to web page j, and the total number of outer links in web page i amounts to 
k. Otherwise, the entry is just zero. The size of a transition matrix of N web 
pages is always N × N. In our case, the matrix has size 8 × 8:

 0  1/2  0   0    0   0   0   0

 1   0  1/2 1/2   0   0   0   0

 0   0   0   0    0   0  1/3  0

 0  1/2  0   0    0   1  1/3  0

 0   0  1/2  0    0   0   0   0

 0   0   0   0    0   0   0  1/2

 0   0   0   0   1/2  0   0  1/2

 0   0   0  1/2  1/2  0  1/3  0

Let us open an iPython session and load this particular matrix to memory.

Remember that in Python, indices start from zero, not one.

In [1]: import numpy as np, matplotlib.pyplot as plt, \

   ...: scipy.linalg as spla, scipy.sparse as spsp, \

   ...: scipy.sparse.linalg as spspla

In [2]: np.set_printoptions(suppress=True, precision=3)

In [3]: cols = np.array([0,1,1,2,2,3,3,4,4,5,6,6,6,7,7]); \

   ...: rows = np.array([1,0,3,1,4,1,7,6,7,3,2,3,7,5,6]); \

   ...: data = np.array([1., 0.5, 0.5, 0.5, 0.5, \

   ...:                  0.5, 0.5, 0.5, 0.5, 1., \
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   ...:                  1./3, 1./3, 1./3, 0.5, 0.5])

In [4]: T = np.zeros((8,8)); \

   ...: T[rows,cols] = data

From the transition matrix, we create a PageRank matrix G by fixing a positive 
constant p between 0 and 1, and following the formula G = (1-p)*T + p*B for a 
suitable damping factor p. Here, B is a matrix with the same size as T, with all its 
entries equal to 1/N. For example, if we choose p = 0.15, we obtain the following 
PageRank matrix:

In [5]: G = (1-0.15) * T + 0.15/8; \

   ...: print G

[[ 0.019  0.444  0.019  0.019  0.019  0.019  0.019  0.019]

 [ 0.869  0.019  0.444  0.444  0.019  0.019  0.019  0.019]

 [ 0.019  0.019  0.019  0.019  0.019  0.019  0.302  0.019]

 [ 0.019  0.444  0.019  0.019  0.019  0.869  0.302  0.019]

 [ 0.019  0.019  0.444  0.019  0.019  0.019  0.019  0.019]

 [ 0.019  0.019  0.019  0.019  0.019  0.019  0.019  0.444]

 [ 0.019  0.019  0.019  0.019  0.444  0.019  0.019  0.444]

 [ 0.019  0.019  0.019  0.444  0.444  0.019  0.302  0.019]]

PageRank matrices have some interesting properties:

• 1 is an eigenvalue of multiplicity one.
• 1 is actually the largest eigenvalue; all the other eigenvalues are in modulus 

smaller than 1.
• The eigenvector corresponding to eigenvalue 1 has all positive entries. In 

particular, for the eigenvalue 1, there exists a unique eigenvector with the 
sum of its entries equal to 1. This is what we call the PageRank vector.

A quick computation with scipy.linalg.eig finds that eigenvector for us:

In [6]: eigenvalues, eigenvectors = spla.eig(G); \

   ...: print eigenvalues

[ 1.000+0.j    -0.655+0.j    -0.333+0.313j -0.333-0.313j –0.171+0.372j 
-0.171-0.372j  0.544+0.j     0.268+0.j   ]

In [7]: PageRank = eigenvectors[:,0]; \

   ...: PageRank /= sum(PageRank); \

   ...: print PageRank.real

[ 0.117  0.232  0.048  0.219  0.039  0.086  0.102  0.157]
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Those values correspond to the PageRank of each of the eight web pages depicted  
on the graph. As expected, the maximum value of those is associated to the second 
web page (0.232), closely followed by the fourth (0.219) and then the eighth web  
page (0.157). These values provide us with the information that we were seeking:  
the second web page is the most popular, followed by the fourth, and then, the eight.

Note how this problem of networks of web pages has been translated 
into mathematical objects, to an equivalent problem involving 
matrices, eigenvalues, and eigenvectors, and has been solved with 
techniques of Linear Algebra.

The transition matrix is sparse: most of its entries are zeros. Sparse matrices with an 
extremely large size are of special importance in Numerical Linear Algebra, not only 
because they encode challenging scientific problems but also because it is extremely 
hard to manipulate them with basic algorithms.

Rather than storing to memory all values in the matrix, it makes sense to collect only 
the non-zero values instead, and use algorithms which exploit these smart storage 
schemes. The gain in memory management is obvious. These methods are usually 
faster for this kind of matrices and give less roundoff errors, since there are usually 
far less operations involved. This is another advantage of SciPy, since it contains 
numerous procedures to attack different problems where data is stored in this 
fashion. Let us observe its power with another example:

The University of Florida Sparse Matrix Collection is the largest database of matrices 
accessible online. As of January 2014, it contains 157 groups of matrices arising  
from all sorts of scientific disciplines. The sizes of the matrices range from very small 
(1 × 2) to insanely large (28 million × 28 million). More matrices are expected to be 
added constantly, as they arise in different engineering problems.

More information about this database can be found in ACM 
Transactions on Mathematical Software, vol. 38, Issue 1, 2011, pp 1:1-
1:25, by T.A. Davis and Y.Hu, or online at http://www.cise.ufl.
edu/research/sparse/matrices/.

For example, the group with the most matrices in the database is the original 
Harwell-Boeing Collection, with 292 different sparse matrices. This group can also be 
accessed online at the Matrix Market: http://math.nist.gov/MatrixMarket/.
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Each matrix in the database comes in three formats:

• Matrix Market Exchange format [Boisvert et al. 1997]
• Rutherford-Boeing Exchange format [Duff et al. 1997]
• Proprietary Matlab .mat format.

Let us import to our iPython session two matrices in the Matrix Market Exchange 
format from the collection, meant to be used in a solution of a least squares problem. 
These matrices are located at www.cise.ufl.edu/research/sparse/matrices/
Bydder/mri2.html.The numerical values correspond to phantom data acquired on 
a Sonata 1.5-T scanner (Siemens, Erlangen, Germany) using a magnetic resonance 

imaging (MRI) device. The object measured is a simulation of a human head made 
with several metallic objects. We download the corresponding tar bundle and untar 
it to get two ASCII files:

• mri2.mtx (the main matrix in the least squares problem)
• mri2_b.mtx (the right-hand side of the equation)

The first twenty lines of the file mri2.mtx read as follows:
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The first sixteen lines are comments, and give us some information about the 
generation of the matrix.

• The computer vision problem where it arose: An MRI reconstruction
• Author information: Mark Bydder, UCSD
• Procedures to apply to the data: Solve a least squares problem A * x - b, and 

posterior visualization of the result

The seventeenth line indicates the size of the matrix, 63240 rows × 147456 columns, 
as well as the number of non-zero entries in the data, 569160.

The rest of the file includes precisely 569160 lines, each containing two integer 
numbers, and a floating point number: These are the locations of the non-zero 
elements in the matrix, together with the corresponding values.

We need to take into account that these files use the FORTRAN 
convention of starting arrays from 1, not from 0.

A good way to read this file into ndarray is by means of the function loadtxt in 
NumPy. We can then use scipy to transform the array into a sparse matrix with the 
function coo_matrix in the module scipy.sparse (coo stands for the coordinate 
internal format).

In [8]: rows, cols, data = np.loadtxt("mri2.mtx", skiprows=17, \

   ...:                               unpack=True)

In [9]: rows -= 1; cols -= 1;

In [10]: MRI2 = spsp.coo_matrix((data, (rows, cols)), \

   ....:                        shape=(63240,147456))

The best way to visualize the sparsity of this matrix is by means of the routine spy 
from the module matplotlib.pyplot.

In [11]: plt.spy(MRI2); \

   ....: plt.show()

Francisco


Consistency: If some numbers are in code, all numbers should be in code.  Otherwise, put all in  packt normal 



Chapter 1

[ 7 ]

We obtain the following image. Each pixel corresponds to an entry in the matrix; 
white indicates a zero value, and non-zero values are presented in different shades  
of blue, according to their magnitude (the higher, the darker):

These are the first ten lines from the second file, mri2_b.mtx, which does not 
represent a sparse matrix, but a column vector:

%% MatrixMarket matrix array complex general

%-------------------------------------------------------------

% UF Sparse Matrix Collection, Tim Davis

% http://www.cise.ufl.edu/research/sparse/matrices/Bydder/mri2

% name: Bydder/mri2 : b matrix

%-------------------------------------------------------------

63240 1

-.07214859127998352 .037707749754190445

-.0729086771607399  .03763720765709877

-.07373382151126862 .03766685724258423
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Those are six commented lines with information, one more line indicating the 
shape of the vector (63240 rows and 1 column), and the rest of the lines contain two 
columns of floating point values, the real and imaginary parts of the corresponding 
data. We proceed to read this vector to memory, solve the least squares problem 
suggested, and obtain the following reconstruction that represents a slice of the 
simulated human head:

In [12]: r_vals, i_vals = np.loadtxt("mri2_b.mtx", skiprows=7,

   ....:                             unpack=True)

In [13]: %time solution = spspla.lsqr(MRI2, r_vals + 1j*i_vals)

CPU times: user 4min 42s, sys: 1min 48s, total: 6min 30s

Wall time: 6min 30s

In [14]: from scipy.fftpack import fft2, fftshift

In [15]: img = solution[0].reshape(384,384); \

   ....: img = np.abs(fftshift(fft2(img)))

In [16]: plt.imshow(img); \

   ....: plt.show()
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If interested in the theory behind the creation of this matrix and the 
particulars of this problem, read the article On the optimality of the Gridding 
Reconstruction Algorithm, by H. Sedarat and D. G. Nishimura, published in 
IEEE Trans. Medical Imaging, vol. 19, no. 4, pp. 306-317, 2000.

For matrices with a good structure, which are going to be exclusively involved in 
matrix multiplications, it is often possible to store the objects in smart ways. Let's 
consider an example.

A horizontal earthquake oscillation affects each floor of a tall building, depending 
on the natural frequencies of the oscillation of the floors. If we make certain 
assumptions, a model to quantize the oscillations on buildings with N floors can 
be obtained as a second-order system of N differential equations by competition: 
Newton's second law of force is set equal to the sum of Hooke's law of force, and the 
external force due to the earthquake wave.

These are the assumptions we will need:

• Each floor is considered a point of mass located at its center-of-mass. The 
floors have masses m[1], m[2], ..., m[N].

• Each floor is restored to its equilibrium position by a linear restoring force 
(Hooke's -k * elongation). The Hooke's constants for the floors are k[1], 
k[2], ..., k[N].

• The locations of masses representing the oscillation of the floors are x[1], 
x[2], ..., x[N]. We assume all of them functions of time and that at 
equilibrium, they are all equal to zero.

• For simplicity of exposition, we are going to assume no friction: all the 
damping effects on the floors will be ignored.

• The equations of a floor depend only on the neighboring floors.

Set M, the mass matrix, to be a diagonal matrix containing the floor masses on its 
diagonal. Set K, the Hooke's matrix, to be a tri-diagonal matrix with the following 
structure, for each row j, all the entries are zero except for the following ones:

• Column j-1, which we set to be k[j+1],
• Column j, which we set to -k[j+1]-k[j+1], and
• Column j+1, which we set to k[j+2].

Set H to be a column vector containing the external force on each floor due to the 
earthquake, and X, the column vector containing the functions x[j].
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We have then the system: M * X'' = K * X + H. The homogeneous part of this system 
is the product of the inverse of M with K, which we denote as A.

To solve the homogeneous linear second-order system, X'' = A * X, we define the 
variable Y to contain 2*N entries: all N functions x[j], followed by their derivatives 
x'[j]. Any solution of this second-order linear system has a corresponding solution 
on the first-order linear system Y' = C * Y, where C is a block matrix of size 2*N 
× 2*N. This matrix C is composed by a block of size N × N containing only zeros, 
followed horizontally by the identity (of size N × N), and below these two, the matrix 
A followed horizontally by another N × N block of zeros.

It is not necessary to store this matrix C into memory, or any of its factors or blocks. 
Instead, we will make use of its structure, and use a linear operator to represent it. 
Minimal data is then needed to generate this operator (only the values of the masses 
and the Hooke's coefficients), much less than any matrix representation of it.

Let us show a concrete example with six floors. We indicate first their masses  
and Hooke's constants, and then, proceed to construct a representation of A as  
a linear operator:

In [17]: m = np.array([56., 56., 56., 54., 54., 53.]); \

   ....: k = np.array([561., 562., 560., 541., 542., 530.])

In [18]: def Axv(v):

   ....:     global k, m

   ....:     w = v.copy()

   ....:     w[0] = (k[1]*v[1] - (k[0]+k[1])*v[0])/m[0]

   ....:     for j in range(1, len(v)-1):

   ....:         w[j] = k[j]*v[j-1] + k[j+1]*v[j+1] - \

   ....:                (k[j]+k[j+1])*v[j]

   ....:         w[j] /= m[j]

   ....:     w[-1] = k[-1]*(v[-2]-v[-1])/m[-1]

   ....:     return w

   ....:

In [19]: A = spspla.LinearOperator((6,6), matvec=Axv, matmat=Axv,

   ....:                           dtype=np.float64)
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The construction of C is very simple now (much simpler than that of its matrix!):

In [20]: def Cxv(v):

   ....:     n = len(v)/2

   ....:     w = v.copy()

   ....:     w[:n] = v[n:]

   ....:     w[n:] = A * v[:n]

   ....:     return w

   ....:

In [21]: C = spspla.LinearOperator((12,12), matvec=Cxv, matmat=Cxv,

   ....:                           dtype=np.float64)

A solution of this homogeneous system comes in the form of an action of the 
exponential of C: Y(t) = expm(C*t)* Y(0), where expm() here denotes a matrix 
exponential function. In SciPy, this operation is performed with the routine expm_
multiply in the module scipy.sparse.linalg.

For example, in our case, given the initial value containing the values x[1](0)=0, 
..., x[N](0)=0, x'[1](0)=1, ..., x'[N](0)=1, if we require a solution Y(t) 
for values of t between 0 and 1 in steps of size 0.1, we could issue the following:

It has been reported in some installations that, in the next step, a 
matrix for C must be given instead of the actual linear operator (thus 
contradicting the manual). If this is the case in your system, simply 
change C in the next lines to its matrix representation.

In [22]: initial_condition = np.zeros(12); \

   ....: initial_condition[6:] = 1

In [23]: Y = spspla.exp_multiply(C, np.zeros(12), start=0,

   ....:                         stop=1, num=10)

The oscillations of the six floors during the first second can then be calculated  
and plotted. For instance, to view the oscillation of the first floor, we could issue  
the following:

In [24]: plt.plot(np.linspace(0,1,10), Y[:,0]); \

   ....: plt.xlabel('time (in seconds)'); \

   ....: plt.ylabel('oscillation')



Numerical Linear Algebra

[ 12 ]

We obtain the following plot. Note how the first floor rises in the first tenth of  
a second, only to drop from 0.1 to 0.9 seconds from its original height to almost 
under a meter and then, start a slow rise:

For more details about systems of differential equations, and how to solve 
them with actions of exponentials, read, for example, the excellent book, 
Elementary Differential Equations 10 ed., by William E. Boyce and Richard 
C. DiPrima. Wiley, 2012.

These three examples illustrate the goal of this first chapter, Numerical Linear 
Algebra. In Python, this is accomplished first by storing the data in a matrix form,  
or as a related linear operator, by means of any of the following classes:

• numpy.ndarray (making sure that they are two-dimensional)
• numpy.matrix

• scipy.sparse.bsr_matrix (Block Sparse Row matrix)
• scipy.sparse.coo_matrix (Sparse Matrix in COOrdinate format)
• scipy.sparse.csc_matrix (Compressed Sparse Column matrix)
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• scipy.sparse.csr_matrix (Compressed Sparse Row matrix)
• scipy.sparse.dia_matrix (Sparse matrix with DIAgonal storage)
• scipy.sparse.dok_matrix (Sparse matrix based on a Dictionary of Keys)
• scipy.sparse.lil_matrix (Sparse matrix based on a linked list)
• scipy.sparse.linalg.LinearOperator

As we have seen in the examples, the choice of different classes obeys mainly to the 
sparsity of data and the algorithms that we are to apply to them.  

We will learn when to apply these choices in the following sections.

This choice then dictates the modules that we use for the different algorithms: 
scipy.linalg for generic matrices and both scipy.sparse and scipy.sparse.
linalg for sparse matrices or linear operators. These three SciPy modules are 
compiled on top of the highly optimized computer libraries BLAS (written in 
Fortran77), LAPACK (in Fortran90), ARPACK (in Fortran77), and SuperLU (in C).

For a better understanding of these underlying packages, read the 
description and documentation from their creators:

• BLAS: netlib.org/blas/faq.html
• LAPACK: netlib.org/lapack/lapack-3.2.html
• ARPACK: www.caam.rice.edu/software/ARPACK/
• SuperLU: crd-legacy.lbl.gov/~xiaoye/SuperLU/

Most of the routines in these three SciPy modules are wrappers to functions in 
the mentioned libraries. If we so desire, we also have the possibility to call the 
underlying functions directly. In the scipy.linalg module, we have the following:

• scipy.linalg.get_blas_funcs to call routines from BLAS
• scipy.linalg.get_lapack_funcs to call routines from LAPACK

For example, if we want to use the BLAS function NRM2 to compute Frobenius norms:

In [25]: blas_norm = spla.get_blas_func('nrm2')

In [26]: blas_norm(np.float32([1e20]))

Out[27]: 1.0000000200408773e+20
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Creation of matrices and linear operators
In the first part of this chapter, we are going to focus on the effective creation of 
matrices. We start by recalling some different ways to construct a basic matrix as 
an ndarray instance class, including an enumeration of all the special matrices 
already included in NumPy and SciPy. We proceed to examine the possibilities of 
constructing complex matrices from basic ones. We review the same concepts within 
the matrix instance class. Next, we explore in detail the different ways to input 
sparse matrices. We finish the section with the construction of linear operators.

We assume familiarity with ndarray creation in NumPy, as well as data 
types (dtype), indexing, routines for the combination of two or more 
arrays, array manipulation, or extracting information from these objects. 
In this chapter, we will focus on the functions, methods, and routines 
that are significant to matrices alone. We will disregard operations if their 
outputs have no translation into linear algebra equivalents. For a primer 
on ndarray, we recommend you to browse through Chapter 2, Top-
Level SciPy of Learning SciPy for Numerical and Scientific Computing Second 
Edition. For a quick review of Linear Algebra, we recommend Hoffman 
and Kunze, Linear Algebra 2nd Edition, Pearson, 1971.

Constructing matrices in the ndarray class
We may create matrices from data as ndarray instances in three different ways: 
manually from standard input, by assigning to each entry a value from a function, or 
by retrieving the data from external files.

Constructor Description

numpy.array(object) Create a matrix from object
numpy.diag(arr, k) Create diagonal matrix with entries of 

array arr on diagonal k
numpy.fromfunction(function, 
shape)

Create a matrix by executing a function 
over each coordinate

numpy.fromfile(fname) Create a matrix from a text or binary file 
(basic)

numpy.loadtxt(fname) Create a matrix from a text file (advanced)
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Let us create some example matrices to illustrate some of the functions defined in the 
previous table. As before, we start an iPython session:

In [1]: import numpy as np, matplotlib.pyplot as plt, \

   ...: scipy.linalg as spla, scipy.sparse as spsp, \

   ...: scipy.sparse.linalg as spspla

In [2]: A = np.array([[1,2],[4,16]]);  
   ...: A

Out[2]:

array([[ 1,  2],

       [ 4, 16]])

In [3]: B = np.fromfunction(lambda i,j: (i-1)*(j+1),

   ...:                     (3,2), dtype=int); \

   ...: print B

 [[-1 -2]

  [ 0  0]

  [ 1  2]]

In [4]: np.diag((1j,4))

Out[4]:

array([[ 0.+1.j,  0.+0.j],

       [ 0.+0.j,  4.+0.j]])

Special matrices with predetermined zeros and ones can be constructed with the 
following functions:

Constructor Description

numpy.empty(shape) Array of a given shape, entries not initialized
numpy.eye(N, M, k) 2-D array with ones on the k-th diagonal, and zeros 

elsewhere
numpy.identity(n) Identity array
numpy.ones(shape) Array with all entries equal to one
numpy.zeros(shape) Array with all entries equal to zero
numpy.tri(N, M, k) Array with ones at and below the given diagonal, 

zeros otherwise
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All these constructions, except numpy.tri, have a companion function 
xxx_like that creates ndarray with the requested characteristics and 
with the same shape and data type as another source ndarray class:

In [5]: np.empty_like(A)
Out[5]:
array([[140567774850560, 140567774850560],
       [     4411734640, 562954363882576]])

Of notable importance are arrays constructed as numerical ranges.

Constructor Description

numpy.arange(stop) Evenly spaced values within an interval
numpy.linspace(start, stop) Evenly spaced numbers over an interval
numpy.logspace(start, stop) Evenly spaced numbers on a log scale
numpy.meshgrid Coordinate matrices from two or more 

coordinate vectors
numpy.mgrid nd_grid instance returning dense multi-

dimensional meshgrid
numpy.ogrid nd_grid instance returning open multi-

dimensional meshgrid

Special matrices with numerous applications in linear algebra can be easily called 
from within NumPy and the module scipy.linalg.

Constructor Description

scipy.linalg.circulant(arr) Circulant matrix generated by 1-D array arr
scipy.linalg.companion(arr) Companion matrix of polynomial with 

coefficients coded by arr
scipy.linalg.hadamard(n) Sylvester's construction of a Hadamard 

matrix of size n × n. n must be a power of 2
scipy.linalg.hankel(arr1, 
arr2)

Hankel matrix with arr1 as the first column 
and arr2 as the last column

scipy.linalg.hilbert(n) Hilbert matrix of size n × n
scipy.linalg.invhilbert(n) The inverse of a Hilbert matrix of size n × n
scipy.linalg.leslie(arr1, 
arr2)

Leslie matrix with fecundity array arr1 and 
survival coefficients arr2

scipy.linalg.pascal(n) n × n truncations of the Pascal matrix of 
binomial coefficients
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Constructor Description

scipy.linalg.toeplitz(arr1, 
arr2)

Toeplitz array with first column arr1 and 
first row arr2

numpy.vander(arr) Van der Monde matrix of array arr

For instance, one fast way to obtain all binomial coefficients of orders up to a large 
number (the corresponding Pascal triangle) is by means of a precise Pascal matrix. 
The following example shows how to compute these coefficients up to order 13:

In [6]: print spla.pascal(13, kind='lower')

Besides these basic constructors, we can always stack arrays in different ways:

Constructor Description

numpy.concatenate((A1, A2, ...)) Join matrices together
numpy.hstack((A1, A2, ...)) Stack matrices horizontally
numpy.vstack((A1, A2, ...)) Stack matrices vertically
numpy.tile(A, reps) Repeat a matrix a certain number of times 

(given by reps)
scipy.linalg.block_diag(A1,A2, 
...)

Create a block diagonal array
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Let us observe some of these constructors in action:

In [7]: np.tile(A, (2,3))   # 2 rows, 3 columns

Out[7]:

array([[ 1,  2,  1,  2,  1,  2],

       [ 4, 16,  4, 16,  4, 16],

       [ 1,  2,  1,  2,  1,  2],

       [ 4, 16,  4, 16,  4, 16]])

In [8]: spla.block_diag(A,B)

Out[9]:

array([[ 1,  2,  0,  0],

       [ 4, 16,  0,  0],

       [ 0,  0, -1, -2],

       [ 0,  0,  0,  0],

       [ 0,  0,  1,  2]])

Constructing matrices in the matrix class
For the matrix class, the usual way to create a matrix directly is to invoke either 
numpy.mat or numpy.matrix. Observe how much more comfortable is the syntax 
of numpy.matrix than that of numpy.array, in the creation of a matrix similar to A. 
With this syntax, different values separated by commas belong to the same row of 
the matrix. A semi-colon indicates a change of row. Notice the casting to the matrix 
class too!

In [9]: C = np.matrix('1,2;4,16'); \

   ...: C

Out[9]:

matrix([[ 1,  2],

        [ 4, 16]])

These two functions also transform any ndarray into matrix. There is a third 
function that accomplishes this task: numpy.asmatrix:

In [10]: np.asmatrix(A)

Out[10]:

matrix([[ 1,  2],

        [ 4, 16]])
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For arrangements of matrices composed by blocks, besides the common stack 
operations for ndarray described before, we have the extremely convenient function 
numpy.bmat. Note the similarity with the syntax of numpy.matrix, particularly the 
use of commas to signify horizontal concatenation and semi-colons to signify vertical 
concatenation:

In [11]: np.bmat('A;B')        In [12]: np.bmat('A,C;C,A')

Out[11]:                       Out[12]:

matrix([[ 1,  2],              matrix([[ 1,  2,  1,  2],

        [ 4, 16],                      [ 4, 16,  4, 16],

        [-1, -2],                      [ 1,  2,  1,  2],

        [ 0,  0],                      [ 4, 16,  4, 16]])

        [ 1,  2]])

Constructing sparse matrices
There are seven different ways to input sparse matrices. Each format is designed to 
make a specific problem or operation more efficient. Let us go over them in detail:

Method Name Optimal use

BSR Block Sparse Row Efficient arithmetic, provided the matrix 
contains blocks.

COO Coordinate Fast and efficient construction format. Efficient 
methods to convert to the CSC and CSR formats.

CSC Compressed Sparse 
Column

Efficient matrix arithmetic and column slicing. 
Relatively fast matrix-vector product.

CSR Compressed Sparse 
Row

Efficient matrix arithmetic and row slicing. 
Fastest to perform matrix-vector products.

DIA Diagonal storage Efficient for construction and storage if the 
matrix contains long diagonals of non-zero 
entries.

DOK Dictionary of keys Efficient incremental construction and access of 
individual matrix entries.

LIL Row-based linked list Flexible slicing. Efficient for changes to matrix 
sparsity.
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They can be populated in up to five ways, three of which are common to every 
sparse matrix format:

• They can cast to sparse any generic matrix. The lil format is the most 
effective with this method:
In [13]: A_coo = spsp.coo_matrix(A); \

   ....: A_lil = spsp.lil_matrix(A)

• They can cast to a specific sparse format another sparse matrix in another 
sparse format:
In [14]: A_csr = spsp.csr_matrix(A_coo)

• Empty sparse matrices of any shape can be constructed by indicating the 
shape and dtype:
In [15]: M_bsr = spsp.bsr_matrix((100,100), dtype=int)

They all have several different extra input methods, each specific to their  
storage format.

• Fancy indexing: As we would do with any generic matrix. This is only 
possible with the LIL or DOK formats:
In [16]: M_lil = spsp.lil_matrix((100,100), dtype=int)

In [17]: M_lil[25:75, 25:75] = 1

In [18]: M_bsr[25:75, 25:75] = 1

NotImplementedError    Traceback (most recent call last)

<ipython-input-18-d9fa1001cab8> in <module>()

----> 1 M_bsr[25:75, 25:75] = 1

[...]/scipy/sparse/bsr.pyc in __setitem__(self, key, val)

    297

    298     def __setitem__(self,key,val):

--> 299         raise NotImplementedError

    300

    301     ######################

NotImplementedError:

• Dictionary of keys: This input system is most effective when we create, 
update, or search each element one at a time. It is efficient only for the LIL 
and DOK formats:
In [19]: M_dok = spsp.dok_matrix((100,100), dtype=int)

In [20]: position = lambda i, j: ((i<j) & ((i+j)%10==0))

In [21]: for i in range(100):
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   ....:     for j in range(100):

   ....:         M_dok[i,j] = position(i,j)

   ....:

• Data, rows, and columns: This is common to four formats: BSR, COO, CSC, 
and CSR. This is the method of choice to import sparse matrices from the 
Matrix Market Exchange format, as illustrated at the beginning of the chapter.

With the data, rows, and columns input method, it is a good idea to 
always include the option shape in the construction. In case this is 
not provided, the size of the matrix will be inferred from the largest 
coordinates from the rows and columns, resulting possibly in a 
matrix of a smaller size than required.

• Data, indices, and pointers: This is common to three formats: BSR, CSC, 
and CSR. It is the method of choice to import sparse matrices from the 
Rutherford-Boeing Exchange format.

The Rutherford-Boeing Exchange format is an updated version of 
the Harwell-Boeing format. It stores the matrix as three vectors: 
pointers_v, indices_v, and data. The row indices of the 
entries of the jth column are located in positions pointers_v(j)  
through pointers_v(j+1)-1 of the vector indices_v. The 
corresponding values of the matrix are located at the same 
positions, in the vector data.

Let us show by example how to read an interesting matrix in the Rutherford-Boeing 
matrix exchange format, Pajek/football. This 35 × 35 matrix with 118 non-zero 
entries can be found in the collection at www.cise.ufl.edu/research/sparse/
matrices/Pajek/football.html.

It is an adjacency matrix for a network of all the national football teams that attended 
the FIFA World Cup celebrated in France in 1998. Each node in the network 
represents one country (or national football team) and the links show which  
country exported players to another country.
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This is a printout of the football.rb file:

The header of the file (the first four lines)  contains important information:

• The first line provides us with the title of the matrix, Pajek/football; 1998; 
L. Krempel; ed: V. Batagelj, and a numerical key for identification purposes 
MTRXID=1474.

• The second line contains four integer values: TOTCRD=12 (lines containing 
significant data after the header; see In [24]), PTRCRD=2 (number of lines 
containing pointer data), INDCRD=5 (number of lines containing indices data), 
and VALCRD=2 (number of lines containing the non-zero values of the matrix). 
Note that it must be TOTCRD = PTRCRD + INDCRD + VALCRD.

• The third line indicates the matrix type MXTYPE=(iua), which in this case 
stands for an integer matrix, unsymmetrical, compressed column form. It 
also indicates the number of rows and columns (NROW=35, NCOL=35), and the 
number of non-zero entries (NNZERO=118). The last entry is not used in the 
case of a compressed column form, and it is usually set to zero.

• The fourth column contains the Fortran formats for the data in the following 
columns. PTRFMT=(20I4) for the pointers, INDFMT=(26I3) for the indices, 
and VALFMT=(26I3) for the non-zero values.

We proceed to opening the file for reading, storing each line after the header in a 
Python list, and extracting from the relevant lines of the file, the data we require 
to populate the vectors indptr, indices, and data. We finish by creating the 
corresponding sparse matrix called football in the CSR format, with the data, 
indices, pointers method:

In [22]: f = open("football.rb", 'r'); \

   ....: football_list = list(f); \

   ....: f.close()
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In [23]: football_data = np.array([])

In [24]: for line in range(4, 4+12):

   ....:     newdata = np.fromstring(football_list[line], sep=" ")

   ....:     football_data = np.append(football_data, newdata)

   ....:

In [25]: indptr = football_data[:35+1] - 1; \

   ....: indices = football_data[35+1:35+1+118] - 1; \

   ....: data = football_data[35+1+118:]

In [26]: football = spsp.csr_matrix((data, indices, indptr),

   ....:                            shape=(35,35))

At this point, it is possible to visualize the network with its associated graph, with 
the help of a Python module called networkx. We obtain the following diagram 
depicting as nodes the different countries. Each arrow between the nodes indicates 
the fact that the originating country has exported players to the receiving country:

networkx is a Python module to deal with complex networks. For more 
information, visit their Github project pages at networkx.github.io.
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One way to accomplish this task is as follows:

In [27]: import networkx

In [28]: G = networkx.DiGraph(football)

In [29]: f = open("football_nodename.txt"); \

   ....: m = list(f); \

   ....: f.close()

In [30]: def rename(x): return m[x]

In [31]: G = networkx.relabel_nodes(G, rename)

In [32]: pos = networkx.spring_layout(G) 

In [33]: networkx.draw_networkx(G, pos, alpha=0.2, node_color='w',

   ....:                        edge_color='b')

The module scipy.sparse borrows from NumPy some interesting concepts to 
create constructors and special matrices:

Constructor Description

scipy.sparse.diags(diagonals, 
offsets)

Sparse matrix from diagonals

scipy.sparse.rand(m, n, density) Random sparse matrix of prescribed 
density

scipy.sparse.eye(m) Sparse matrix with ones in the main 
diagonal

scipy.sparse.identity(n) Identity sparse matrix of size n × n

Both functions diags and rand deserve examples to show their syntax. We will start 
with a sparse matrix of size 14 × 14 with two diagonals: the main diagonal contains 
1s, and the diagonal below contains 2s. We also create a random matrix with the 
function scipy.sparse.rand. This matrix has size 5 × 5, with 25 percent non-zero 
elements (density=0.25), and is crafted in the LIL format:

In [34]: diagonals = [[1]*14, [2]*13]

In [35]: print spsp.diags(diagonals, [0,-1]).todense()

[[ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

 [ 2.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

 [ 0.  2.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

 [ 0.  0.  2.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

 [ 0.  0.  0.  2.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

 [ 0.  0.  0.  0.  2.  1.  0.  0.  0.  0.  0.  0.  0.  0.]

 [ 0.  0.  0.  0.  0.  2.  1.  0.  0.  0.  0.  0.  0.  0.]
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 [ 0.  0.  0.  0.  0.  0.  2.  1.  0.  0.  0.  0.  0.  0.]

 [ 0.  0.  0.  0.  0.  0.  0.  2.  1.  0.  0.  0.  0.  0.]

 [ 0.  0.  0.  0.  0.  0.  0.  0.  2.  1.  0.  0.  0.  0.]

 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  2.  1.  0.  0.  0.]

 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  2.  1.  0.  0.]

 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  2.  1.  0.]

 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  2.  1.]]

In [36]: S_25_lil = spsp.rand(5, 5, density=0.25, format='lil')

In [37]: S_25_lil<5x5 sparse matrix of type '<type 'numpy.float64'>'

        with 6 stored elements in LInked List format>

In [38]: print S_25_lil

  (0, 0)    0.186663044982

  (1, 0)    0.127636181284

  (1, 4)    0.918284870518

  (3, 2)    0.458768884701

  (3, 3)    0.533573291684

  (4, 3)    0.908751420065

In [39]: print S_25_lil.todense()

[[ 0.18666304  0.          0.          0.          0.        ]

 [ 0.12763618  0.          0.          0.          0.91828487]

 [ 0.          0.          0.          0.          0.        ]

 [ 0.          0.          0.45876888  0.53357329  0.        ]

 [ 0.          0.          0.          0.90875142  0.        ]]

Similar to the way we combined ndarray instances, we have some clever ways to 
combine sparse matrices to construct more complex objects:

Constructor Description

scipy.sparse.bmat(blocks) Sparse matrix from sparse sub-blocks
scipy.sparse.hstack(blocks) Stack sparse matrices horizontally
scipy.sparse.vstack(blocks) Stack sparse matrices vertically

Francisco


What happened here?  Please, do not change the code!  After S_25_lil there should be a new line starting with <5x5 …
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Linear operators
A linear operator is basically a function that takes as input a column vector and 
outputs another column vector, by left multiplication of the input with a matrix. 
Although technically, we could represent these objects just by handling the 
corresponding matrix, there are better ways to do this.

Constructor Description

scipy.sparse.linalg.
LinearOperator(shape, matvec)

Common interface for 
performing matrix vector 
products 

scipy.sparse.linalg.aslinearoperator(A) Return A as LinearOperator

In the scipy.sparse.linalg module, we have a common interface that handles 
these objects: the LinearOperator class. This class has only the following two 
attributes and three methods:

• shape: The shape of the representing matrix
• dtype: The data type of the matrix
• matvec: To perform multiplication of a matrix with a vector
• rmatvec: To perform multiplication by the conjugate transpose of a matrix 

with a vector
• matmat: To perform multiplication of a matrix with another matrix 

Its usage is best explained through an example. Consider two functions that take 
vectors of size 3, and output vectors of size 4, by left multiplication with two 
respective matrices of size 4 × 3. We could very well define these functions with 
lambda predicates:

In [40]: H1 = np.matrix("1,3,5; 2,4,6; 6,4,2; 5,3,1"); \

   ....: H2 = np.matrix("1,2,3; 1,3,2; 2,1,3; 2,3,1")

In [41]: L1 = lambda x: H1.dot(x); \

   ....: L2 = lambda x: H2.dot(x)

In [42]: print L1(np.ones(3))

[[  9.  12.  12.   9.]]

In [43]: print L2(np.tri(3,3))

 [[ 6.  5.  3.]

  [ 6.  5.  2.]

  [ 6.  4.  3.]

  [ 6.  4.  1.]]
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Now, one issue arises when we try to add/subtract these two functions, or multiply 
any of them by a scalar. Technically, it should be as easy as adding/subtracting the 
corresponding matrices, or multiplying them by any number, and then performing 
the required left multiplication again. But that is not the case.

For instance, we would like to write (L1+L2)(v) instead of L1(v) + L2(v). 
Unfortunately, doing so will raise an error:

TypeError: unsupported operand type(s) for +: 'function' and 

'function'

Instead, we may instantiate the corresponding linear operators and manipulate them 
at will, as follows:

In [44]: Lo1 = spspla.aslinearoperator(H1); \

   ....: Lo2 = spspla.aslinearoperator(H2)

In [45]: Lo1 - 6 * Lo2

Out[45]: <4x3 _SumLinearOperator with dtype=float64>

In [46]: print Lo1 * np.ones(3)

[  9.  12.  12.  9.]

In [47]: print (Lo1-6*Lo2) * np.tri(3,3)

[[-27. -22. -13.]

 [-24. -20.  -6.]

 [-24. -18. -16.]

 [-27. -20.  -5.]]

Linear operators are a great advantage when the amount of information needed 
to describe the product with the related matrix is less than the amount of memory 
needed to store the non-zero elements of the matrix.

For instance, a permutation matrix is a square binary matrix (ones and zeros) that has 
exactly one entry in each row and each column. Consider a large permutation matrix, 
say 1024 × 1024, formed by four blocks of size 512 × 512: a zero block followed 
horizontally by an identity block, on top of an identity block followed horizontally 
by another zero block. We may store this matrix in three different ways:

In [47]: P_sparse = spsp.diags([[1]*512, [1]*512], [512,-512], \

   ....:                       dtype=int)

In [48]: P_dense = P_sparse.todense()

In [49]: mv = lambda v: np.roll(v, len(v)/2)

In [50]: P_lo = spspla.LinearOperator((1024,1024), matvec=mv, \

   ....:                              matmat=mv, dtype=int)

Francisco
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In the sparse case, P_sparse, we may think of this as the storage of just 1024 integer 
numbers. In the dense case, P_dense, we are technically storing 1048576 integer 
values. In the case of the linear operator, it actually looks like we are not storing 
anything! The function mv that indicates how to perform the multiplications has  
a much smaller footprint than any of the related matrices. This is also reflected in  
the time of execution of the multiplications with these objects:

In [51]: %timeit P_sparse * np.ones(1024)

10000 loops, best of 3: 29.7 µs per loop

In [52]: %timeit P_dense.dot(np.ones(1024))

100 loops, best of 3: 6.07 ms per loop

In [53]: %timeit P_lo * np.ones(1024)

10000 loops, best of 3: 25.4 µs per loop

Basic matrix manipulation
The emphasis of the second part of this chapter is on mastering the following 
operations:

• Scalar multiplication, matrix addition, and matrix multiplication
• Traces and determinants
• Transposes and inverses
• Norms and condition numbers

Scalar multiplication, matrix addition, and 

matrix multiplication
Let us start with the matrices stored with the ndarray class. We accomplish scalar 
multiplication with the * operator, and the matrix addition with the + operator. But 
for matrix multiplication we will need the instance method dot() or the numpy.dot 
function, since the operator * is reserved for element-wise multiplication:

In [54]: 2*A

Out[54]:array([[ 2,  4],

              [ 8, 32]])

In [55]: A + 2*A

Out[55]:array([[ 3,  6],

      [12, 48]])

Francisco
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In [56]: A.dot(2*A)       In [42]: np.dot(A, 2*A)

Out[56]:                   Out[42]:

array([[ 18,  68],        array([[ 18,  68],

       [136, 528]])              [136, 528]])

In [57]: A.dot(B)

ValueError: objects are not aligned

In [58]: B.dot(A)         In [44]: np.dot(B, A)

Out[58]:                   Out[44]:

array([[ -9, -34],        array([[ -9, -34],

       [  0,   0],               [  0,   0],

       [  9,  34]])              [  9,  34]])

The matrix class makes matrix multiplication more intuitive: the operator * can  
be used instead of the dot() method. Note also how matrix multiplication between 
different instance classes ndarray and a matrix is always casted to a matrix  
instance class:

In [59]: C * B

ValueError: objects are not aligned

In [60]: B * C

Out[60]: matrix([[ -9, -34],

        [  0,   0],

        [  9,  34]])

For sparse matrices, both scalar multiplication and addition work well with  
the obvious operators, even if the two sparse classes are not the same. Note the 
resulting class casting after each operation:

In [61]: S_10_coo = spsp.rand(5, 5, density=0.1, format='coo')

In [62]: S_25_lil + S_10_coo

<5x5 sparse matrix of type '<type 'numpy.float64'>'

        with 8 stored elements in Compressed Sparse Row format>

In [63]: S_25_lil * S_10_coo

<5x5 sparse matrix of type '<type 'numpy.float64'>'

        with 4 stored elements in Compressed Sparse Row format>

Francisco
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numpy.dot does not work well for matrix multiplication of a sparse 
matrix with a generic.  We must use the operator * instead.

In [64]: S_100_coo = spsp.rand(2, 2, density=1, format='coo')

In [65]: np.dot(A, S_100_coo)

Out[66]:

array([[ <2x2 sparse matrix of type '<type 'numpy.float64'>'

  with 4 stored elements in COOrdinate format>,

        <2x2 sparse matrix of type '<type 'numpy.float64'>'

  with 4 stored elements in COOrdinate format>],

       [ <2x2 sparse matrix of type '<type 'numpy.float64'>'

  with 4 stored elements in COOrdinate format>,

        <2x2 sparse matrix of type '<type 'numpy.float64'>'

  with 4 stored elements in COOrdinate format>]], dtype=object)

In [67]: A * S_100_coo

Out[68]:array([[  1.81 ,   1.555],

       [ 11.438,  11.105]])

Traces and determinants
The traces of a matrix are the sums of the elements on the diagonals (assuming 
always increasing indices in both dimensions). For generic matrices, we compute 
them with the instance method trace(), or with the function numpy.trace:

In [69]: A.trace()        In [71]: C.trace()

Out[69]: 17               Out[71]: matrix([[17]])

In [70]: B.trace()        In [72]: np.trace(B, offset=-1)

Out[70]: -1               Out[72]: 2

In order to compute the determinant of generic square matrices, we need the 
function det in the module scipy.linalg:

In [73]: spla.det(C)

Out[73]: 8.0

Francisco
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Transposes and inverses
Transposes can be computed with any of the two instance methods transpose()  
or T, for any of the two classes of generic matrices:

In [74]: B.transpose()        In [75]: C.T

Out[74]:                      Out[75]: 

array([[-1,  0,  1],          matrix([[ 1,  4],

       [-2,  0,  2]])                 [ 2, 16]])

Hermitian transpose can be computed for the matrix class with the instance  
method H:

In [76]: D = C * np.diag((1j,4)); print D     In [77]: print D.H

[[  0.+1.j   8.+0.j]                          [[  0.-1.j   0.-4.j]

 [  0.+4.j  64.+0.j]]                          [  8.-0.j  64.-0.j]]

Inverses of non-singular square matrices are computed for the ndarray class with 
the function inv in the module scipy.linalg. For the matrix class, we may also  
use the instance method I. For non-singular square sparse matrices, we may use  
the function inv in the module scipy.sparse.linalg.

Inverses of sparse matrices are seldom sparse. For this reason, it is not 
recommended to perform this operation with the scipy.sparse.
inv function. One possible way to go around this issue is to convert the 
matrix to generic with the todense() instance method, and use scipy.
linear.inv instead.
But due to the difficulty of inverting large matrices, it is often beneficial 
to compute approximations to the inverse, instead. The function spilu 
in the module scipy.sparse.linalg provides us with a very fast 
algorithm to perform this computation for square sparse matrices in CSC 
format. This algorithm is based on LU decompositions, and coded internally 
as a wrapper of a function from the library SuperLU. Its use is rather 
complex, and we are going to postpone its study until we explore matrix 
factorizations.

In [78]: E = spsp.rand(512, 512, density=1).todense()

In [79]: S_100_csc = spsp.rand(512, 512, density=1, format='csc')

In [80]: %timeit E.I

10 loops, best of 3: 28.7 ms per loop

In [81]: %timeit spspla.inv(S_100_csc)

1 loops, best of 3: 1.99 s per loop
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In the execution of sparse inverses, if the input matrix is not in the CSC or 
CSR format, we will get a warning:
/scipy/sparse/linalg/dsolve/linsolve.py:88: 
SparseEfficiencyWarning: spsolve requires A be CSC or CSR 
matrix format
  warn('spsolve requires A be CSC or CSR matrix format', 
SparseEfficiencyWarning)
/scipy/sparse/linalg/dsolve/linsolve.py:103: 
SparseEfficiencyWarning: solve requires b be CSC or CSR 
matrix format

The Moore-Penrose pseudo-inverse can be computed for any kind of matrix (not 
necessarily square) with either routines the pinv or the pinv2 in the module scipy.
linalg. The first method, pinv, resorts to solving a least squares problem to 
compute the pseudo-inverse. The function pinv2  computes the pseudo-inverse by a 
method based on singular value decompositions. For Hermitian matrices, or matrices 
that are symmetric with no complex coefficients, we also have a third function called 
pinvh, which is based on eigenvalue decompositions.

It is known that in the case of square non-singular matrices, the inverse and pseudo-
inverse are the same. This simple example shows the times of computation of the 
inverses of a large generic symmetric matrix with the five methods described:

In [82]: F = E + E.T     # F is symmetric

In [83]: %timeit F.I

1 loops, best of 3: 24 ms per loop

In [84]: %timeit spla.inv(F)

10 loops, best of 3: 28 ms per loop

In [85]: %timeit spla.pinvh(E)

1 loops, best of 3: 120 ms per loop

In [86]: %timeit spla.pinv2(E)

1 loops, best of 3: 252 ms per loop

In [87]: %timeit spla.pinv(F)

1 loops, best of 3: 2.21 s per loop
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Norms and condition numbers
For generic matrices, we have seven different standard norms in scipy.linalg. We 
can summarize them in the following table:

Constructor Description

norm(A,numpy.inf) Sum of absolute values of entries in each row. Pick the largest 
value.

norm(A,-numpy.
inf)

Sum of absolute values of entries in each row. Pick the smallest 
value.

norm(A,1) Sum of absolute values of entries in each column. Pick the 
largest value.

norm(A,-1) Sum of absolute values of entries in each column. Pick the 
smallest value.

norm(A,2) Largest eigenvalue of the matrix.
norm(A,-2) Smallest eigenvalue of the matrix.
norm(A,'fro') or 
norm(A,'f')

Frobenius norm: the square root of the trace of the product A.H 
* A.

In [88]: [spla.norm(A,s) for s in (np.inf,-np.inf,-1,1,-2,2,'fro')]

Out[88]: [20, 3, 5, 18, 0.48087417361008861, 16.636368595013604,  
16.643316977093239]

For sparse matrices, we can always compute norms by applying the 
todense() instance method prior to computation. But when the sizes 
of the matrices are too large, this is very impractical. In those cases, the 
best we can get for the 1-norm is a lower bound, thanks to the function 
onenormest in the module scipy.sparse.linalg:
In [89]: spla.norm(S_100_csc.todense(), 1) - \
   ....: spspla.onenormest(S_100_csc)
Out[89]: 0.0

As for the 2-norms, we may find the values of the smallest and the largest 
eigenvalue, but only for square matrices. We have two algorithms in the 
module scipy.sparse.linalg that perform this task: eigs (for generic 
square matrices) and eigsh for real symmetric matrices. We will explore 
them in detail when we discuss matrix decompositions and factorizations 
in the next section.
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Note the subtle difference between the norm computations from SciPy and NumPy. 
For example, in the case of the Frobenius norm, scipy.linalg.norm is based 
directly on the BLAS function called NRM2, while numpy.linalg.norm is equivalent 
to a purely straightforward computation of the form sqrt(add.reduce((x.conj() 
* x).real)). The advantage of the code based on BLAS, besides being much faster, 
is clear when some of the data is too large or too small in single-precision arithmetic. 
This is shown in the following example:

In [89]: a = np.float64([1e20]); \

   ....: b = np.float32([1e20])

In [90]: [np.linalg.norm(a), spla.norm(a)]

Out[90]: [1e+20, 1e+20]

In [91]: np.linalg.norm(b)

[...]/numpy/linalg/linalg.py:2056: RuntimeWarning: overflow encountered 
in multiply

  return sqrt(add.reduce((x.conj() * x).real, axis=None))

Out[91]: inf

In [92]: spla.norm(b)

Out[92]: 1.0000000200408773e+20

This brings us inevitably to a discussion about the computation of the condition 
number of a non-singular square matrix A. This value measures how much the output 
of the solution to the linear equation A * x = b will change when we make small 
changes to the input argument b. If this value is close to one, we can rest assured 
that the solution is going to change very little (we say then that the system is well-
conditioned). If the condition number is large, we know that there might be issues 
with the computed solutions of the system (and we say then that it is ill-conditioned).

The computation of this condition number is performed by multiplying the norm 
of A with the norm of its inverse. Note that there are different condition numbers, 
depending on the norm that we choose for the computation. These values can also be 
computed for each of the pre-defined norms with the function numpy.linalg.cond, 
although we need to be aware of its obvious limitations.

In [93]: np.linalg.cond(C, -np.inf)

Out[93]: 1.875
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Matrix functions
A matrix function is a function that maps a square matrix to another square matrix 
via a power series. These should not be confused with vectorization: the application 
of any given function of one variable to each element of a matrix. For example, it is 
not the same to compute the square of a square matrix, A.dot(A) (for example, In 
[8]), than a matrix with all the elements of A squared (examples In [5] through  
In []).

To make the proper distinction in notation, we will write A^2 to denote 
the actual square of a square matrix and A^n to represent the subsequent 
powers (for all positive integers n).

Constructor Description

scipy.linalg.funm(A, func, disp) Extension of a scalar-valued 
function called func to a matrix

scipy.linalg.fractional_matrix_
power(A, t)

Fractional matrix power

scipy.linalg.expm(A) or scipy.sparse.
linalg.expm(A)

Matrix exponential

scipy.sparse.linalg.expm_multiply(A,B) Action of the matrix exponential 
of A on B

scipy.linalg.expm_frechet(A, E) Frechet derivative of the matrix 
exponential in the E direction

scipy.linalg.cosm(A) Matrix cosine
scipy.linalg.sinm(A) Matrix sine
scipy.linalg.tanm(A) Matrix tangent
scipy.linalg.coshm(A) Hyperbolic matrix cosine
scipy.linalg.sinhm(A) Hyperbolic matrix sine
scipy.linalg.tanhm(A) Hyperbolic matrix tangent
scipy.linalg.signm(A) Matrix sign function
scipy.linalg.sqrtm(A, disp, blocksize) Matrix square root
scipy.linalg.logm(A, disp) Matrix logarithm

In [1]: import numpy as np, scipy as sp; \

   ...: import scipy.linalg as spla

In [2]: np.set_printoptions(suppress=True, precision=3)

In [3]: square = lambda x: x**2

In [4]: A = spla.hilbert(4); print A



Numerical Linear Algebra

[ 36 ]

[[ 1.     0.5    0.333  0.25 ]

 [ 0.5    0.333  0.25   0.2  ]

 [ 0.333  0.25   0.2    0.167]

 [ 0.25   0.2    0.167  0.143]]

In [5]: print square(A)

[[ 1.     0.25   0.111  0.062]

 [ 0.5    0.333  0.25   0.2  ]

 [ 0.333  0.25   0.2    0.167]

 [ 0.25   0.2    0.167  0.143]]

In [6]: print A*A

[[ 1.     0.25   0.111  0.062]

 [ 0.25   0.111  0.062  0.04 ]

 [ 0.111  0.062  0.04   0.028]

 [ 0.062  0.04   0.028  0.02 ]]

In [7]: print A**2

[[ 1.     0.25   0.111  0.062]

 [ 0.25   0.111  0.062  0.04 ]

 [ 0.111  0.062  0.04   0.028]

 [ 0.062  0.04   0.028  0.02 ]]

In [8]: print A.dot(A)

[[ 1.424  0.8    0.567  0.441]

 [ 0.8    0.464  0.333  0.262]

 [ 0.567  0.333  0.241  0.19 ]

 [ 0.441  0.262  0.19   0.151]]

The actual powers A^n of a matrix is the starting point for the definition of any 
matrix function. In the module numpy.linalg we have the routine matrix_power 
to perform this operation. We can also achieve this result with the generic function 
funm or with the function fractional_matrix_power, both of them in the module 
scipy.linalg.

In [9]: print np.linalg.matrix_power(A, 2)

[[ 1.424  0.8    0.567  0.441]

 [ 0.8    0.464  0.333  0.262]

 [ 0.567  0.333  0.241  0.19 ]

 [ 0.441  0.262  0.19   0.151]]

In [10]: print spla.fractional_matrix_power(A, 2)

[[ 1.424  0.8    0.567  0.441]
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 [ 0.8    0.464  0.333  0.262]

 [ 0.567  0.333  0.241  0.19 ]

 [ 0.441  0.262  0.19   0.151]]

In [11]: print spla.funm(A, square)

[[ 1.424  0.8    0.567  0.441]

 [ 0.8    0.464  0.333  0.262]

 [ 0.567  0.333  0.241  0.19 ]

 [ 0.441  0.262  0.19   0.151]]

To compute any matrix function, theoretically, we first express the function as a 
power series, by means of its Taylor expansion. Then, we apply the input matrix 
into an approximation to that expansion (since it is impossible to add matrices ad 
infinitum). Most matrix functions necessarily carry an error of computation, for this 
reason. In the scipy.linalg module, the matrix functions are coded following  
this principle.

• Note that there are three functions with an optional Boolean parameter disp. 
To understand the usage of this parameter, we must remember that most 
matrix functions compute approximations, with an error of computation. The 
parameter disp is set to True by default, and it produces a warning if the 
error of approximation is large. If we set disp to False, instead of a warning 
we will obtain the 1-norm of the estimated error.

• The algorithms behind the functions expm, the action of an exponential over 
a matrix, expm_multiply, and the Frechet derivative of an exponential, 
expm_frechet, use Pade approximations instead of Taylor expansions. This 
allows for more robust and accurate calculations. All the trigonometric and 
hyperbolic trigonometric functions base their algorithm in easy computations 
involving expm.

• The generic matrix function called funm and the square-root function called 
sqrtm apply clever algorithms that play with the Schur decomposition of the 
input matrix, and proper algebraic manipulations with the corresponding 
eigenvalues. They are still prone to roundoff errors but are much faster  
and more accurate than any algorithm based on Taylor expansions.

• The matrix sign function called signm is initially an application of funm 
with the appropriate function, but should this approach fail, the algorithm 
takes a different approach based on iterations that converges to a decent 
approximation to the solution.
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• The functions logm and fractional_matrix_power (when the latter is 
applied to non-integer powers) use a very complex combination (and 
improvement!) of Pade approximations and Schur decompositions.

We will explore Schur decompositions when we deal with matrix 
factorizations related to eigenvalues. In the meantime, if you are 
interested in learning the particulars of these clever algorithms, read their 
descriptions in Golub and Van Loan, Matrix Computations 4 edition, Johns 
Hopkins Studies in the Mathematical Sciences, vol. 3.
For details on the improvements to Schur-Pade algorithms, as well as the 
algorithm behind Frechet derivatives of the exponential, refer to:

• Nicholas J. Higham and Lijing Lin An Improved Schur-Pade 
Algorithm for Fractional Powers of a Matrix and Their Frechet 
Derivatives

• Awad H. Al-Mohy and Nicholas J. Higham Improved Inverse 
Scaling and Squaring Algorithms for the Matrix Logarithm, in SIAM 
Journal on Scientific Computing, 34 (4)

Matrix factorizations related to solving 

matrix equations
The concept of matrix decompositions is what makes Numerical Linear Algebra an 
efficient tool in Scientific Computing. If the matrix representing a problem is simple 
enough, any basic generic algorithm can find the solutions optimally (that is, fast, 
with minimal storage of data, and without a significant roundoff error). But, in real 
life, this situation seldom occurs. What we do in the general case is finding a suitable 
matrix factorization and tailoring an algorithm that is optimal on each factor, thus 
gaining on each step an obvious advantage. In this section, we explore the different 
factorizations included in the modules scipy.linalg and scipy.sparse.linalg 
that help us achieve a robust solution to matrix equations.

Relevant factorizations
We have the following factorizations in this category:

Pivoted LU decomposition

It is always possible to perform a factorization of a square matrix A as a product A = 
P * L * U of a permutation matrix P (which performs a permutation of the rows of A), 
a lower triangular matrix L, and an upper triangular matrix U:
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Constructor Description

scipy.linalg.lu(A) Pivoted LU decomposition
scipy.linalg.lu_factor(A) Pivoted LU decomposition
scipy.sparse.linalg.splu(A) Pivoted LU decomposition 
scipy.sparse.linalg.spilu(A) Incomplete pivoted LU decomposition 

Cholesky decomposition

For a square, symmetric, and positive definite matrix A, we can realize the matrix as 
the product A = U.T * U of an upper triangular matrix U with its transpose, or as the 
product A = L.T * L of a lower triangular matrix L with its transpose. All the diagonal 
entries of U or L are strictly positive numbers:

Constructor Description

scipy.linalg.cholesky(A) Cholesky decomposition 
scipy.linalg.cholesky_
banded(AB)

Cholesky decomposition for Hermitian 
positive-definite banded matrices

QR decomposition

We can realize any matrix of size m × n as the product A=Q*R of a square orthogonal 
matrix Q of size m × m, with an upper triangular matrix R of the same size as A.

Constructor Description

scipy.linalg.qr(A) QR decomposition of a matrix

Singular value decomposition

We can realize any matrix A as the product A = U * D * V.H of a unitary matrix U with 
a diagonal matrix D (where all entries in the diagonal are positive numbers), and the 
Hermitian transpose of another unitary matrix V. The values on the diagonal of D are 
called the singular values of A.

Constructor Description

scipy.linalg.svd(A) Singular value decomposition
scipy.linalg.svdvals(A) Singular values 
scipy.linalg.diagsvd(s, m, n) Diagonal matrix of an SVD, from singular 

values `s` and  prescribed size
scipy.sparse.linalg.svds(A) Largest k singular values/vectors of a 

sparse matrix
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Matrix equations
In SciPy, we have robust algorithms to solve any matrix equation based on the 
following cases:

• Given a square matrix A, and a right-hand side b (which can be a one-
dimensional vector or another matrix with the same number of rows as A), 
the basic systems are as follows:

 ° A * x = b
 ° A.T * x = b
 ° A.H * x = b

• Given any matrix A (not necessarily square) and a right-hand side vector/
matrix b of an appropriate size, the least squares solution to the equation A 
* x = b.  This is, finding a vector x that minimizes the Frobenius norm of the 
expression A * x - b.

• For the same case as before, and an extra damping coefficient d, the 
regularized least squares solution to the equation A * x = b that minimizes the 
functional norm(A * x - b, 'f')**2 + d^2 * norm(x, 'f')**2.

• Given square matrices A and B, and a right-hand side matrix Q with 
appropriate sizes, the Sylvester system is A * X + X * B = Q.

• For a square matrix A and matrix Q of an appropriate size, the continuous 
Lyapunov equation is A * X + X * A.H = Q.

• For matrices A and Q, as in the previous case, the discrete Lyapunov equation 
is X - A * X * A.H = Q.

• Given square matrices A, Q, and R, and another matrix B with an appropriate 
size, the continuous algebraic Riccati equation is A.T * X + X * A - X * B * R.I * 
B.T * X + Q = 0.

• For matrices as in the previous case, the Discrete Algebraic Riccati equation is 
X = A.T*X*A - (A.T*X*B)*(R+B.T*X*B).I*(B.T*X*A) + Q.

In any case, mastering matrix equations with SciPy basically means identifying 
the matrices involved and choosing the most adequate algorithm in the libraries to 
perform the requested operations. Besides being able to compute a solution with the 
least possible amount of roundoff error, we need to do so in the fastest possible way, 
and by using as few memory resources as possible.
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Back and forward substitution

Let us start with the easiest possible case: The basic system of linear equations  
A*x = b (or the other two variants), where A is a generic lower or upper triangular 
square matrix. In theory, these systems are easily solved by forward substitution  
(for lower triangular matrices) or back substitution (for upper triangular matrices).  
In SciPy, we accomplish this task with the function solve_triangular in the 
module scipy.linalg.

For this initial example, we will construct A as a lower triangular Pascal matrix of 
size 1024 × 1024, where the non-zero values have been filtered: odd values are turned 
into ones, while even values are turned into zeros. The right-hand side b is a vector 
with 1024 ones.

In [1]: import numpy as np, \

   ...: scipy.linalg as spla, scipy.sparse as spsp, \

   ...: scipy.sparse.linalg as spspla

In [2]: A = (spla.pascal(1024, kind='lower')%2 != 0)

In [3]: %timeit spla.solve_triangular(A, np.ones(1024))

10 loops, best of 3: 6.64 ms per loop

To solve the other related systems that involve the matrix A, we employ the optional 
parameter trans (by default set to 0 or N, giving the basic system A * x = b). If trans 
is set to T or 1, we solve the system A.T * x = b instead. If trans is set to C or 2, we 
solve A.H * x = b instead.

The function solve_triangular is a wrapper for the LAPACK 
function trtrs.

Basic systems: banded matrices

The next cases in terms of algorithm simplicity are those of basic systems A * x = 
b, where A is a square banded matrix. We use the routines solve_banded (for a 
generic banded matrix) or solveh_banded (for a generic real symmetric of complex 
Hermitian banded matrix). Both of them belong to the module scipy.linalg.

The functions solve_banded and solveh_banded are wrappers 
for the LAPACK functions GBSV, and PBSV, respectively.
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Neither function accepts a matrix in the usual format. For example, since solveh_
banded expects a symmetric banded matrix, the function requires as input only the 
elements of the diagonals on and under/over the main diagonal, stored sequentially 
from the top to the bottom.

This input method is best explained through a concrete example. Take the following 
symmetric banded matrix:

 2 -1  0  0  0  0

-1  2 -1  0  0  0

 0 -1  2 -1  0  0

 0  0 -1  2 -1  0

 0  0  0 -1  2 -1

 0  0  0  0 -1  2 

The size of the matrix is 6 × 6, and there are only three non-zero diagonals, two of 
which are identical due to symmetry. We collect the two relevant non-zero diagonals 
in ndarray of size 2 × 6 in one of two ways, as follows:

• If we decide to input the entries from the upper triangular matrix, we collect 
first the diagonals from the top to the bottom (ending in the main diagonal), 
right justified:
* -1 -1 -1 -1 -1 
2  2  2  2  2  2

• If we decide to input the entries from the lower triangular matrix, we collect 
the diagonals from the top to the bottom (starting from the main diagonal), 
left justified:
 2  2  2  2  2  2 
-1 -1 -1 -1 -1  *

In [4]: B_banded = np.zeros((2,6)); \

   ...: B_banded[0,1:] = -1; \

   ...: B_banded[1,:] = 2

In [5]: spla.solveh_banded(B_banded, np.ones(6))

Out[5]: array([ 3.,  5.,  6.,  6.,  5.,  3.])
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For a non-symmetric banded square matrix, we use solve_banded instead, and the 
input matrix also needs to be stored in this special way:

• Count the number of non-zero diagonals under the main diagonal (set that to 
l). Count the number of non-zero diagonals over the main diagonal (set that 
to u). Set r = l + u + 1.

• If the matrix has size n × n, create ndarray with n columns and r rows. We 
refer to this storage as a matrix in the AB form, or an AB matrix, for short.

• Store in the AB matrix only the relevant non-zero diagonals, from the top to 
the bottom, in order. Diagonals over the main diagonal are right justified; 
diagonals under the main diagonal are left justified.

Let us illustrate this process with another example. We input the following matrix:

 2 -1  0  0  0  0

-1  2 -1  0  0  0

 3 -1  2 -1  0  0

 0  3 -1  2 -1  0

 0  0  3 -1  2 -1

 0  0  0  3 -1  2

In [6]: C_banded = np.zeros((4,6)); \

   ...: C_banded[0,1:] = -1; \

   ...: C_banded[1,:] = 2; \

   ...: C_banded[2,:-1] = -1; \

   ...: C_banded[3,:-2] = 3; \

   ...: print C_banded

[[ 0. -1. -1. -1. -1. -1.]

 [ 2.  2.  2.  2.  2.  2.]

 [-1. -1. -1. -1. -1.  0.]

 [ 3.  3.  3.  3.  0.  0.]]

To call the solver, we need to input manually the number of diagonals over and under 
the diagonal, together with the AB matrix and the right-hand side of the system:

In [7]: spla.solve_banded((2,1), C_banded, np.ones(6))

Out[7]:

array([ 0.86842105,  0.73684211, -0.39473684,  0.07894737, 

        1.76315789,  1.26315789])
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Let us examine the optional parameters that we can include in the call of these  
two functions:

Parameter Default values Description

l_and_u (int, int) Number of non-zero lower/upper diagonals
ab Matrix in AB format A banded square matrix
b ndarray Right-hand side
overwrite_ab Boolean Discard data in ab
overwrite_b Boolean Discard data in b
check_finite Boolean Whether to check that input matrices contain 

finite numbers

All the functions in the scipy.linalg module that require matrices 
as input and output either a solution to a system of equations, or a 
factorization, have two optional parameters with which we need to 
familiarize: overwrite_x (for each matrix/vector in the input) and 
check_finite. They are both Boolean.
The overwrite options are set to False by default. If we do not care 
about retaining the values of the input matrices, we may use the same 
object in the memory to perform operations, rather than creating another 
object with the same size in the memory. We gain speed and use fewer 
resources in such a case.
The check_finite option is set to True by default. In the algorithms 
where it is present, there are optional checks for the integrity of the data. 
If at any given moment, any of the values is (+/-)numpy.inf or NaN, 
the process is halted, and an exception is raised. We may turn this option 
off, thus resulting in much faster solutions, but the code might crash if the 
data is corrupted at any point in the computations.

The function solveh_banded has an extra optional Boolean parameter, lower, which 
is initially set to False. If set to True, we must input the lower triangular matrix  
of the target AB matrix instead of the upper one (with the same input convention  
as before).

Basic systems: generic square matrices

For solutions of basic systems where A is a generic square matrix, it is a good idea 
to factorize A so that some (or all) of the factors are triangular and then apply back 
and forward substitution, where appropriate. This is the idea behind pivoted LU and 
Cholesky decompositions.
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If matrix A is real symmetric (or complex Hermitian) and positive definite, the optimal 
strategy goes through applying any of the two possible Cholesky decompositions A = 
U.H * U or A = L * L.H with the U and L upper/lower triangular matrices.

For example, if we use the form with the upper triangular matrices, the solution of 
the basic system of equations A * x = b turns into U.H * U * x = b. Set y = U * x and 
solve the system U.H * y = b for y by forward substitution. We have now  a new 
triangular system U * x = y that we solve for x, by back substitution.

To perform the solution of such a system with this technique, we first compute the 
factorization by using either thefunctions cholesky, cho_factor or cholesky_
banded. The output is then used in the solver cho_solve.

For Cholesky decompositions, the three relevant functions called cholesky, cho_
factor, and cholesky_banded have a set of options similar to those of solveh_
banded. They admit an extra Boolean option lower (set by default to False) that 
decides whether to output a lower or an upper triangular factorization. The function 
cholesky_banded requires a matrix in the AB format as input.

Let us now test the Cholesky decomposition of matrix B with all three methods:

In [8]: B = spsp.diags([[-1]*5, [2]*6, [-1]*5], [-1,0,1]).todense()

   ...: print B

[[ 2. -1.  0.  0.  0.  0.]

 [-1.  2. -1.  0.  0.  0.]

 [ 0. -1.  2. -1.  0.  0.]

 [ 0.  0. -1.  2. -1.  0.]

 [ 0.  0.  0. -1.  2. -1.]

 [ 0.  0.  0.  0. -1.  2.]]

In [9]: np.set_printoptions(suppress=True, precision=3)

In [10]: print spla.cholesky(B)

[[ 1.414 -0.707  0.     0.     0.     0.   ]

 [ 0.     1.225 -0.816  0.     0.     0.   ]

 [ 0.     0.     1.155 -0.866  0.     0.   ]

 [ 0.     0.     0.     1.118 -0.894  0.   ]

 [ 0.     0.     0.     0.     1.095 -0.913]

 [ 0.     0.     0.     0.     0.     1.08 ]]

In [11]: print spla.cho_factor(B)[0]

[[ 1.414 -0.707  0.     0.     0.     0.   ]

 [-1.     1.225 -0.816  0.     0.     0.   ]
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 [ 0.    -1.     1.155 -0.866  0.     0.   ]

 [ 0.     0.    -1.     1.118 -0.894  0.   ]

 [ 0.     0.     0.    -1.     1.095 -0.913]

 [ 0.     0.     0.     0.    -1.     1.08 ]]

In [12]: print spla.cholesky_banded(B_banded)

[[ 0.    -0.707 -0.816 -0.866 -0.894 -0.913]

 [ 1.414  1.225  1.155  1.118  1.095  1.08 ]]

The output of cho_factor is a tuple: the second element is the Boolean lower. The 
first element is ndarray representing a square matrix. If lower is set to True, the 
lower triangular sub-matrix of this ndarray is L in the Cholesky factorization of A. If 
lower is set to False, the upper triangular sub-matrix is U in the factorization of A. 
The remaining elements in the matrix are random, instead of zeros, since they are not 
used by cho_solve. In a similar way, we can call cho_solve_banded with the output 
of cho_banded to solve the appropriate system.

Both cholesky and cho_factor are wrappers to the same LAPACK 
function called potrf, with different output options. cholesky_banded 
calls pbtrf. The cho_solve function is a wrapper for potrs, and  
cho_solve_banded calls pbtrs.

We are then ready to solve the system, with either of the two options:

In [13]: spla.cho_solve((spla.cholesky(B), False), np.ones(6))

Out[13]: array([ 3.,  5.,  6.,  6.,  5.,  3.])

In [13]: spla.cho_solve(spla.cho_factor(B), np.ones(6))

Out[13]: array([ 3.,  5.,  6.,  6.,  5.,  3.])

For any other kind of generic square matrix A, the next best method to solve the 
basic system A * x = b is pivoted LU factorization. This is equivalent to finding a 
permutation matrix P, and triangular matrices U (upper) and L (lower) so that P * A = 
L * U. In such a case, a permutation of the rows in the system according to P gives the 
equivalent equation (P * A) * x = P * b. Set c = P * b and y = U * x, and solve for y 
in the system L * y = c using forward substitution. Then, solve for x in the system 
U * x = y with back substitution.

The relevant functions to perform this operation are lu, lu_factor  
(for factorization), and lu_solve (for solution) in the module scipy.linalg.  For 
sparse matrices we have splu, and spilu, in the module scipy.sparse.linalg.
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Let us start experimenting with factorizations first. We use a large circulant matrix 
(non-symmetric) for this example:

In [14]: D = spla.circulant(np.arange(4096))

In [15]: %timeit spla.lu(D)

1 loops, best of 3: 7.04 s per loop

In [16]: %timeit spla.lu_factor(D)

1 loops, best of 3: 5.48 s per loop

The lu_factor function is a wrapper to all *getrf routines from 
LAPACK. The lu_solve function is a wrapper for getrs.

The function lu has an extra Boolean option: permute_l (set to False by default). 
If set to True, the function outputs only two matrices PL = P * L (the properly 
permuted lower triangular matrix), and U. Otherwise, the output is the triple P, L, U, 
in that order.

In [17]: P, L, U = spla.lu(D)

In [17]: PL, U = spla.lu(D, permute_l=True)

The outputs of the function lu_factor are resource-efficient. We obtain a matrix 
LU, with upper triangle U and lower triangle L. We also obtain a one-dimensional 
ndarray class of integer dtype, piv, indicating the pivot indices representing the 
permutation matrix P.

In [18]: LU, piv = spla.lu_factor(D)

The solver lu_solve takes the two outputs from lu_factor, a right-hand side 
matrix b, and the optional indicator trans to the kind of basic system to solve:

In [19]: spla.lu_solve(spla.lu_factor(D), np.ones(4096))

Out[19]: array([ 0.,  0.,  0., ...,  0.,  0.,  0.])

At this point, we must comment on the general function solve  in the 
module scipy.linalg. It is a wrapper to both LAPACK functions 
POSV and GESV. It allows us to input matrix A and right-hand side 
matrix b, and indicate whether A is symmetric and positive definite. In 
any case, the routine internally decides which of the two factorizations 
to use (Cholesky or pivoted LU), and computes a solution accordingly.
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For large sparse matrices, provided they are stored in the CSC format, the pivoted 
LU decomposition is more efficiently performed with either functions splu or spilu 
from the module scipy.sparse.linalg. Both functions use the SuperLU library 
directly. Their output is not a set of matrices, but a Python object called scipy.
sparse.linalg.dsolve._superlu.SciPyLUType. This object has four attributes 
and one instance method:

• shape: 2-tuple containing the shape of matrix A
• nnz: The number of non-zero entries in matrix A
• perm_c, perm_r: The permutations applied to the columns and rows 

(respectively) to the matrix A to obtain the computed LU decomposition
• solve: instance method that converts the object into a function object.

solve(b,trans) accepting ndarray b, and the optional description  
string trans.

The big idea is that, dealing with large amounts of data, the actual matrices in the LU 
decomposition are not as important as the main application behind the factorization: 
the solution of the system. All the relevant information to perform this operation is 
optimally stored in the object's method solve.

The main difference between splu and spilu is that the latter computes an 
incomplete decomposition. With it, we can obtain really good approximations to the 
inverse of matrix A, and use matrix multiplication to compute the solution of large 
systems in a fraction of the time that it would take to calculate the actual solution.

The usage of these two functions is rather complex. The purpose is to 
compute a factorization of the form Pr*Dr*A*Dc*Pc = L*U with diagonal 
matrices Dr and Dc and permutation matrices Pr and Pc. The idea is to 
equilibrate matrix A manually so that the product B = Dr*A*Dc is better 
conditioned than A. In case of the possibility of solving this problem in 
a parallel architecture, we are allowed to help by rearranging the rows 
and columns optimally. The permutation matrices Pr and Pc are then 
manually input to pre-order the rows and columns of B. All of these 
options can be fed to either splu or spilu.
The algorithm exploits the idea of relaxing supernodes to reduce 
inefficient indirect addressing and symbolic time (besides permitting 
the use of higher-level BLAS operations). We are given the option to 
determine the degree of these objects, to tailor the algorithm to the matrix 
at hand.
For a complete explanation of the algorithms and all the different options, 
the best reference is SuperLU User Guide, which can be found online at 
crd-legacy.lbl.gov/~xiaoye/SuperLU/superlu_ug.pdf.
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Let us illustrate this with a simple example, where the permutation of rows or 
columns is not needed. In a large lower triangular Pascal matrix, turn into zero all 
the even-valued entries and into ones all the odd-valued entries. Use this as matrix A. 
For the right-hand side, use a vector of ones:

In [20]: A_csc = spsp.csc_matrix(A, dtype=np.float64)

In [21]: invA = spspla.splu(A_csc)

In [22]: %time invA.solve(np.ones(1024))

CPU times: user: 4.32 ms, sys: 105 µs, total: 4.42 ms

Wall time: 4.44 ms

Out[22]: array([ 1., -0.,  0., ..., -0.,  0.,  0.])

In [23]: invA = spspla.spilu(A_csc)

In [24]: %time invA.solve(np.ones(1024))

CPU times: user 656 µs, sys: 22 µs, total: 678 µs

Wall time: 678 µs

Out[24]: array([ 1.,  0.,  0., ...,  0.,  0.,  0.]) 

Compare the time of execution of the procedures on sparse matrices, with 
the initial solve_triangular procedure on the corresponding matrix A 
at the beginning of the section. Which process is faster?

However, in general, if a basic system must be solved and matrix A is large and 
sparse, we prefer to use iterative methods with fast convergence to the actual 
solutions. When they converge, they are consistently less sensitive to rounding-off 
errors and thus more suitable when the number of computations is extremely high.

In the module scipy.sparse.linalg, we have eight different iterative methods, all 
of which accept the following as parameters:

• Matrix A in any format (matrix, ndarray, sparse matrix, or even a linear 
operator!), and right-hand side vector/matrix b as ndarray.

• Initial guess x0, as ndarray.
• Tolerance to l, a floating point number. If the difference of successive 

iterations is less than this value, the code stops and the last computed values 
are output as the solution.

• Maximum number of iterations allowed, maxiter, an integer.
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• A preconditioner sparse matrix M that should approximate the inverse of A.
• A callback function of the current solution vector xk, called after  

each iteration.

Constructor Description

bicg Biconjugate Gradient Iteration
bicgstab Biconjugate Gradient Stabilized Iteration
cg Conjugate Gradient Iteration
cgs Conjugate Gradient Squared Iteration
gmres Generalized Minimal Residual Iteration
lgmres LGMRES Iteration
minres Minimum Residual Iteration
qmr Quasi-minimal Residual Iteration

Choosing the right iterative method, a good initial guess, and especially a successful 
preconditioner is an art in itself. It involves learning about topics such as operators in 
Functional Analysis, or Krylov subspace methods, which are far beyond the scope of 
this book. At this point, we are content with showing a few simple examples for the 
sake of comparison:

In [25]: spspla.cg(A_csc, np.ones(1024), x0=np.zeros(1024))

Out[25]: (array([ nan,  nan,  nan, ...,  nan,  nan,  nan]), 1)

In [26]: %time spspla.gmres(A_csc, np.ones(1024), x0=np.zeros(1024))

CPU times: user 4.26 ms, sys: 712 µs, total: 4.97 ms

Wall time: 4.45 ms

Out[26]: (array([ 1.,  0.,  0., ..., -0., -0.,  0.]), 0)

In [27]: Nsteps = 1

   ....: def callbackF(xk):

   ....:     global Nsteps

   ....:     print'{0:4d}  {1:3.6f}  {2:3.6f}'.format(Nsteps, \

   ....:     xk[0],xk[1])

   ....:     Nsteps += 1

   ....:

In [28]: print '{0:4s}  {1:9s}  {1:9s}'.format('Iter', \

   ....: 'X[0]','X[1]'); \

   ....: spspla.bicg(A_csc, np.ones(1024), x0=np.zeros(1024), \

   ....: callback=callbackF)
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Iter  X[0]       X[1]

   1  0.017342  0.017342

   2  0.094680  0.090065

   3  0.258063  0.217858

   4  0.482973  0.328061

   5  0.705223  0.337023

   6  0.867614  0.242590

   7  0.955244  0.121250

   8  0.989338  0.040278

   9  0.998409  0.008022

  10  0.999888  0.000727

  11  1.000000  -0.000000

  12  1.000000  -0.000000

  13  1.000000  -0.000000

  14  1.000000  -0.000000

  15  1.000000  -0.000000

  16  1.000000  0.000000

  17  1.000000  0.000000

Out[28]: (array([ 1.,  0.,  0., ...,  0.,  0., -0.]), 0)

Least squares

Given a generic matrix A (not necessarily square) and a right-hand side  
vector/matrix b, we look for a vector/matrix x such that the Frobenius  
norm of the expression A * x - b is minimized.

The main three methods to solve this problem numerically are contemplated  
in scipy:

• Normal equations
• QR factorization
• Singular value decomposition

Normal equations

Normal equations reduce the least square problem to solving a basic system of linear 
equations, with a symmetric (not-necessarily positive-definite) matrix. It is very 
fast but can be inaccurate due to presence of roundoff errors. Basically, it amounts 
to solving the system (A.H * A) * x = A.H * b. This is equivalent to solving x = 
(A.H * A).I * A.H * b = pinv(A) * b.
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Let us show by example:

In [29]: E = D[:512,:256]; b = np.ones(512)

In [30]: sol1 = np.dot(spla.pinv2(E), b)

In [31]: sol2 = spla.solve(np.dot(F.T, F), np.dot(F.T, b))

QR factorization

The QR factorization turns any matrix into the product A = Q * R of an orthogonal/
unitary matrix Q with a square upper triangular matrix R. This allows us to solve the 
system without the need to invert any matrix (since Q.H = Q.I), and thus, A * x = 
b turns into R * x = Q.H * b, which is easily solvable by back substitution. Note that 
the two methods below are equivalent, since the mode economic reports the sub-
matrices of maximum rank:

In [32]: Q, R = spla.qr(E); \

   ....: RR = R[:256, :256]; BB = np.dot(Q.T, b)[:256]; \

   ....: sol3 = spla.solve_triangular(RR, BB)

In [32]: Q, R = spla.qr(E, mode='economic'); \

   ....: sol3 = spla.solve_triangular(R, np.dot(Q.T, b))

Singular value decomposition

Both methods of normal equations and QR factorization work fast and are reliable 
only when the rank of A is full. If this is not the case, we must use singular value 
decomposition A = U * D * V.H with unitary matrices U and V and a diagonal matrix 
D, where all the entries in the diagonal are positive values. This allows for a fast 
solution x = V * D.I * U.H * b.

Note that the two methods discussed below are equivalent, since the option full_
matrices set to False reports the sub-matrices of the minimum possible size:

In [33]: U, s, Vh = spla.svd(E); \

   ....: Uh = U.T; \

   ....: Si = spla.diagsvd(1./s, 256, 256); \

   ....: V = Vh.T; \

   ....: sol4 = np.dot(V, Si).dot(np.dot(Uh, b)[:256])  

In [33]: U, s, Vh = spla.svd(E, full_matrices=False); \

   ....: Uh = U.T; \

   ....: Si = spla.diagsvd(1./s, 256, 256); \

   ....: V = Vh.T; \

   ....: sol4 = np.dot(V, Si).dot(np.dot(Uh, b))
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The module scipy.linalg has one function that actually performs least squares 
with the SVD method: lstsq. There is no need to manually transpose, invert, and 
multiply all the required matrices.  It is a wrapper to the LAPACK function GELSS. It 
outputs the desired solution, together with the residues of computation, the effective 
rank, and the singular values of the input matrix A.

In [34]: sol5, residue, rank, s = spla.lstsq(E, b)

Note how all the computations that we have carried out offer solutions that are very 
close to each other (if not equal!):

In [35]: map(lambda x: np.allclose(sol5,x), [sol1, sol2, sol3, sol4])

Out[35]: [True, True, True, True]

Regularized least squares

The module scipy.sparse.linalg has two iterative methods for least squares 
in the context of large sparse matrices, lsqr and lsmr, which allow for a more 
generalized version with a damping factor d for regularization. We seek to minimize 
the functional norm(A * x - b, 'f')**2 + d^2 * norm(x, 'f')**2. The usage 
and parameters are very similar to the iterative functions we studied before.

Other matrix equation solvers

The rest of the matrix equation solvers are summarized in the following table. None 
of these routines enjoy any parameters to play around with performance or memory 
management, or check for the integrity of data:

Constructor Description

solve_sylvester(A, B, Q) Sylvester equation
solve_continuous_are(A, B, Q, R) continuous algebraic Riccati equation
solve_discrete_are(A, B, Q, R) discrete algebraic Riccati equation
solve_lyapunov(A, Q) continuous Lyapunov equation
solve_discrete_lyapunov(A, Q) discrete Lyapunov equation
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Matrix factorizations based on 

eigenvalues
In this category, we have two kinds of factorizations on square matrices: Spectral 
and Schur decompositions (although, technically, a spectral decomposition is a 
special case of Schur decomposition). The objective of both is initially to present the 
eigenvalues of one or several matrices simultaneously, although they have quite 
different applications.

Spectral decomposition
We consider the following four cases:

• Given a square matrix A, we seek all vectors v (right eigenvectors) that satisfy 
A*v = m*v for some real or complex value m (the corresponding eigenvalues). 
If all eigenvectors are different, we collect them as the columns of matrix V 
(that happens to be invertible). Their corresponding eigenvalues are stored 
in the same order as the diagonal entries of a diagonal matrix D. We can then 
realize A as the product A = V*D*V.I. We refer to this decomposition as an 
ordinary eigenvalue problem.

• Given a square matrix A, we seek all vectors v (left eigenvectors) that 
satisfy v*A = m*v for the eigenvalues m. As before, if all eigenvectors are 
different, they are collected in matrix V; their corresponding eigenvalues are 
collected in the diagonal matrix D. The matrix A can then be decomposed as 
the product A = V*D*V.I. We also refer to this factorization as an ordinary 
eigenvalue problem. The eigenvalues are the same as in the previous case.

• Given square matrices A and B with the same size, we seek all vectors v 
(generalized right eigenvectors) that satisfy m*A*v = n*B*v for some real or 
complex values m and n. The ratios r = n/m, when they are computable, are 
called generalized eigenvalues. The eigenvectors are collected as columns  
of matrix V, and their corresponding generalized eigenvalues r collected  
in a diagonal matrix D. We can then realize the relation between A and B by  
the identity A = B*V*D*V.I. We refer to this identity as a generalized 
eigenvalue problem.

• For the same case as before, if we seek vectors v (generalized left 
eigenvectors) and values m and n that satisfy m*v*A = n*v*B, we have another 
similar decomposition. We again refer to this factorization as a generalized 
eigenvalue problem.
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The following functions in the modules scipy.linalg and scipy.sparse.linalg 
help us to compute eigenvalues and eigenvectors:

Constructor Description

scipy.linear.eig(A[, B]) Ordinary/generalized eigenvalue problem
scipy.linalg.eigvals(A[, B]) Eigenvalues for ordinary/generalized 

eigenvalue problem
scipy.linalg.eigh(A[, B]) Ordinary/generalized eigenvalue problem. 

Hermitian/symmetric matrix
scipy.linalg.eigvalsh(A[, B]) Eigenvalues for ordinary/generalized 

eigenvalue problem; Hermitian/symmetric 
matrix

scipy.linalg.eig_banded(AB) Ordinary eigenvalue problem; Hermitian/
symmetric band matrix

scipy.linalg.eigvals_banded(AB) Eigenvalues for ordinary eigenvalue 
problem; Hermitian/symmetric band matrix

scipy.sparse.linalg.eigs(A, k) Find k eigenvalues and eigenvectors 
scipy.sparse.linalg.eigsh(A, k) Find k eigenvalues and eigenvectors; Real 

symmetric matrix
scipy.sparse.linalg.lobpcg(A, X) Ordinary/generalized eigenvalue problem 

with optional preconditioning A symmetric

For any kind of eigenvalue problem where the matrices are not symmetric or 
banded, we use the function eig, which is a wrapper for the LAPACK routines GEEV 
and GGEV (the latter for generalized eigenvalue problems). The function eigvals 
is syntactic sugar for a case of eig that only outputs the eigenvalues, but not the 
eigenvectors. To report whether we require left of right eigenvectors, we use the 
optional Boolean parameters left and right. By default, left is set to False and 
right to True, hence offering right eigenvectors.

For eigenvalue problems with non-banded real symmetric or Hermitian matrices, we 
use the function eigh, which is a wrapper for the LAPACK routines of the form *EVR, 
*GVD, and *GV. We are given the choice to output as many eigenvalues as we want, 
with the optional parameter eigvals. This is a tuple of integers that indicate the 
indices of the lowest and the highest eigenvalues required. If omitted, all eigenvalues 
are returned. In such a case, it is possible to perform the computation with a much 
faster algorithm based on divide and conquer techniques. We may indicate this choice 
with the optional Boolean parameter turbo (by default set to False).
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If we wish to report only eigenvalues, we can set the optional parameter  
eigvals_only to True, or use the corresponding syntactic sugar eighvals.

The last case that we contemplate in the scipy.linalg module is that of the 
eigenvalue problem of a banded real symmetric or Hermitian matrix. We use the 
function eig_banded, making sure that the input matrices are in the AB format.  
This function is a wrapper for the LAPACK routines *EVX.

For extremely large matrices, the computation of eigenvalues is often computationally 
impossible. If these large matrices are sparse, it is possible to calculate a few 
eigenvalues with two iterative algorithms, namely the Implicitly Restarted Arnoldi 
and the Implicitly Restarted Lanczos methods (the latter for symmetric or Hermitian 
matrices). The module scipy.sparse.linalg has two functions, eigs and eigsh, 
which are wrappers to the ARPACK routines *EUPD that perform them. We also have the 
function lobpcg that performs another iterative algorithm, the Locally Optimal Block 

Preconditioned Conjugate Gradient method. This function accepts a preconditioner, 
and thus has the potential to converge more rapidly to the desired eigenvalues.

We will illustrate the usage of all these functions with an interesting matrix: Andrews. 
It was created in 2003 precisely to benchmark memory-efficient algorithms for 
eigenvalue problems. It is a real symmetric sparse matrix with size 60,000 × 60,000 and 
760,154 non-zero entries. It can be downloaded from the Sparse Matrix Collection at 
www.cise.ufl.edu/research/sparse/matrices/Andrews/Andrews.html.

For this example, we downloaded the matrix in the Matrix Market format Andrews.
mtx. Note that the matrix is symmetric, and the file only provides data on or below 
the main diagonal. After collecting all this information, we ensure that we populate  
the upper triangle too:

In [1]: import numpy as np, scipy.sparse as spsp, \

   ...: scipy.sparse.linalg as spspla

In [2]: np.set_printoptions(suppress=True, precision=6)

In [3]: rows, cols, data = np.loadtxt("Andrews.mtx", skiprows=14, \

   ...:                               unpack=True); \

   ...: rows-=1; \

   ...: cols-=1

In [4]: A = spsp.csc_matrix((data, (rows, cols)), \

   ...:                     shape=(60000,60000)); \

   ...: A = A + spsp.tril(A, k=1).transpose()
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We compute first the top largest five eigenvalues in absolute value. We call the 
function eigsh, with the option which='LM'.

In [5]: %time eigvals, v = spspla.eigsh(A, 5, which='LM')

CPU times: user 3.59 s, sys: 104 ms, total: 3.69 s

Wall time: 3.13 s

In [6]: print eigvals

[ 69.202683  69.645958  70.801108  70.815224  70.830983]

We may compute the smallest eigenvalues in terms of the absolute value too, by 
switching to the option which='SM':

In [7]: %time eigvals, v = spspla.eigsh(A, 5, which='SM')

CPU times: user 19.3 s, sys: 532 ms, total: 19.8 s

Wall time: 16.7 s

In [8]: print eigvals

[ 10.565523  10.663114  10.725135  10.752737  10.774503]

The routines in ARPACK are not very efficient at finding small eigenvalues. 
It is usually preferred to apply the shift-invert mode in this case for better 
performance. For information about this procedure, read the description 
in www.caam.rice.edu/software/ARPACK/UG/node33.html, or 
the article by R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USER 
GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted 
Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

The function eigsh allows us to perform shift-invert mode by indicating 
a value close to the required eigenvalues. If we have a good guess, as 
offered by the previous step, we may apply this procedure with the 
option sigma, and a strategy with the option mode. In this case, we 
also need to provide a linear operator instead of a matrix. The time 
of execution is much slower, but the results are much more precise in 
general (although the given example would not suggest so!).

In [9]: A = spspla.aslinearoperator(A)

In [10]: %time spspla.eigsh(A, 5, sigma=10.0, mode='cayley')

CPU times: user 2min 5s, sys: 916 ms, total: 2min 6s

Wall time: 2min 6s

In [11]: print eigvals

[ 10.565523  10.663114  10.725135  10.752737  10.774503]
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Schur decomposition
There are four cases:

• Complex Schur decomposition for a square matrix A with complex 
coefficients. We can realize A as the product A = U*T*U.H of a unitary matrix 
U with an upper triangular matrix T, and the Hermitian transpose of U. We 
call T the complex Schur form of A. The entries in the diagonal of T are the 
eigenvalues of A.

• Real Schur decomposition for a square matrix A with real coefficients. If all 
the eigenvalues of the matrix are real valued, then we may realize the matrix 
as the product A = V*S*V.T of an orthonormal matrix V with a block-upper 
triangular matrix S, and the transpose of V. The blocks in S are either of size  
1 × 1 or 2 × 2. If the block is 1 × 1, the value is one of the real eigenvalues of A. 
Any 2 × 2 blocks represents a pair of complex conjugate eigenvalues of A. We 
call S the real Schur form of A.

• Complex generalized Schur decomposition of two square matrices A and 
B. We can simultaneously factorize them to the form A = Q*S*Z.H and B = 
Q*T*Z.H with the same unitary matrices Q and Z. The matrices S and T are 
both upper triangular, and the ratios of their diagonal elements are precisely 
the generalized eigenvalues of A and B.

• Real generalized Schur decomposition of two real-valued square matrices 
A and B. Simultaneous factorization of both can be achieved in the form A 
= Q*S*Z.T and B = Q*T*Z.T for the same orthogonal matrices Q and Z. The 
matrices S and T are block-upper triangular, with blocks of size 1 × 1 and 2 × 
2. With the aid of these blocks, we can find the generalized eigenvalues  
of A and B.

There are four functions in the module scipy.linalg that provide us with tools to 
compute any of these decompositions:

Constructor Description

scipy.linalg.schur(A) Schur decomposition of a matrix
scipy.linalg.rsf2csf(T, Z) Convert from real Schur form to complex Schur 

form
scipy.linalg.qz(A, B) Generalized Schur decomposition of two matrices
scipy.linalg.hessenberg(A) Hessenberg form of a matrix
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The function hessenberg gives us the first step in the computation of any Schur 
decomposition. This is a factorization of any square matrix A in the form A = Q * U * 
Q.H, where Q is unitary and U is an upper Hessenberg matrix (all entries are zero below 
the sub-diagonal). The algorithm is based on the combination of the LAPACK routines 
GEHRD, GEBAL (to compute U), and the BLAS routines GER, GEMM (to compute Q).

The functions schur and qz are wrappers to the LAPACK routines GEES and GGES, to 
compute the normal and generalized Schur decompositions (respectively) of square 
matrices. We choose whether to report complex or real decompositions on the basis 
of the optional parameter output (which we set to 'real' or 'complex'). We also 
have the possibility of sorting the eigenvalues in the matrix representation. We do so 
with the optional parameter sort, with the following possibilities:

• None: If we do not require any sorting. This is the default.
• 'lhp': In the left-hand plane. 
• 'rhp': In the right-hand plane
• 'iuc': Inside the unit circle
• 'ouc': Outside the unit circle
• func: Any callable function called func can be used to provide the users with 

their own sorting

Summary
In this chapter, we have explored the basic principles of numerical linear algebra—the 
core of all procedures in scientific computing. The emphasis was first placed on the 
storage and the basic manipulation of matrices and linear operators. We explored in 
detail all different factorizations, focusing on their usage to find a solution to matrix 
equations or eigenvalue problems. All through the chapter, we made it a point to 
link the functions from the modules scipy.linalg and scipy.sparse to their 
corresponding routines in the libraries BLAS, LAPACK, ARPACK and SuperLU. For our 
experiments, we chose interesting matrices from real-life problems that we gathered 
from the extensive Sparse Matrix Collection hosted by the University of Florida.

In the next chapter, we will address the problems of interpolation and least squares 
approximation.
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