Answers to Assigned Problems in Lesson 06
Page 45.
- \( x^8 \)
- \( x^6 \)
- \( x^{12} \)
- \( x^{14} \)
- \( 8x^{10} \)
- \( 25 x^{13} \)
- \( \tfrac{3}{2} x \)
- \( 40x \)
- \( \tfrac{4}{x} \)
- \( \tfrac{2}{x^5} \)
- \( \tfrac{1}{x^2} \)
- \( \tfrac{1}{x} \)
- \( \tfrac{5}{2}x^3 \)
-
\( \tfrac{1}{3x^2} \)
Problems 15 to 20 should read Rewrite using *positive* or fractional exponents
- \( 4x^5 \)
- \( 4x^3 \)
- \( 3x^{1/2} \)
- \( x^{1/4} \)
- \( 4x^{-1/3} \)
- \( \tfrac{1}{5}x^{-1/2} \)
- \( \tfrac{4}{\sqrt{x}} \)
- \( \tfrac{5}{\sqrt[3]{x}} \)
- \( 2\sqrt[3]{x} \)
- \( 5\sqrt{x^3} = 5x\sqrt{x} \)
Page 72
- \( 10^t=v \)
- \( 10^s=r \)
- \( e^n=w \)
- \( e^y=x \)
- \( \log b = a \)
- \( \log v = p \)
- \( \ln h = k \)
- \( \ln x = y \)
- \( x = \log_5 14 \)
- \( x = \log_3 23 \)
- \( x = -\log_7 15 \)
- \( x = -\log_3 4 \)
- \( x = \tfrac{1}{5}\ln 17 \)
- \( x = \tfrac{3}\ln 12 \)
- \( x = \tfrac{1}{4}\big( 5 + \log_3 38 \big) \)
- \( x = \tfrac{1}{2} \big( 3 + \log_4 44 \big) \)
- \( t = \log_{1.04} 5 \)
- \( t = \log_{1.06} 2.75 \)
- \( t = \tfrac{1}{3} \log_{1.04} \tfrac{8}{3} \)
- \( t = \tfrac{1}{4} \log_{1.08} \tfrac{7}{2} \)
- \( t = -\tfrac{1}{0.12} \ln 0.2 \)
- \( t = -\tfrac{1}{0.003} \ln 0.4 \)
- \( t = \log_{0.5} 0.635 \)
- \( t = \log_{0.25} 0.3 \)
- In 2013
- In 2026
- About 13 months and two weeks
- About 13 months