MATH 524 Fall 2017 Chapter 2
Basic, Intermediate and CAS problems
-
Consider the function \( f(x,y) = \dfrac{x+y}{2+\cos x}. \) At what points \( (x,y) \in \mathbb{R}^2 \) is this function continuous?
-
Give an example of a \( 2 \times 2 \) symmetric matrix of each kind below:
- positive definite,
- positive semidefinite,
- negative definite,
- negative semidefinite,
- indefinite.
-
Classify the following matrices according to whether they are positive or negative definite or semidefinite or indefinite:
- \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \)
- \( \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -2 \end{bmatrix} \)
- \( \begin{bmatrix} 7 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & 5 \end{bmatrix} \)
- \( \begin{bmatrix} 3 & 1 & 2 \\ 1 & 5 & 3 \\ 2 & 3 & 7 \end{bmatrix} \)
- \( \begin{bmatrix} -4 & 0 & 1 \\ 0 & -3 & 2 \\ 1 & 2 & -5 \end{bmatrix} \)
- \( \begin{bmatrix} 2 & -4 & 0 \\ -4 & 8 & 0 \\ 0 & 0 & -3 \end{bmatrix}\)
-
Write the quadratic form \( \mathcal{Q}_{\boldsymbol{A}}(\boldsymbol{x}) \) associated with each of the following matrices \( \boldsymbol{A} \):
- \( \begin{bmatrix} -1 & 2 \\ 2 & 3 \end{bmatrix} \)
- \( \begin{bmatrix} 1 & -1 & 0 \\ -1 & -2 & 2 \\ 0 & 2 & 3 \end{bmatrix} \)
- \( \begin{bmatrix} 2 & -3 \\ -3 & 0 \end{bmatrix} \)
- \( \begin{bmatrix} -3 & 1 & 2 \\ 1 & 2 & -1 \\ 2 & -1 & 4 \end{bmatrix} \)
-
Write each of the quadratic forms below in the form \( \boldsymbol{x} \boldsymbol{A} \boldsymbol{x}^\intercal \) for an appropriate symmetric matrix \( \boldsymbol{A} \):
- \( 3x^2-xy+2y^2. \)
- \( x^2+2y^2-3z^2+2xy-4xz+6yz. \)
- \( 2x^2-4z^2+xy-yz. \)
-
Identify which of the following real-valued functions are coercive. Explain the reason.
- \( f(x,y) = \sqrt{x^2+y^2}. \)
- \( f(x,y) = x^2 + 9y^2 - 6xy. \)
- \( f(x,y) = x^4 - 3xy +y^4. \)
- Rosenbrock functions \( \mathcal{R}_{a,b}. \)
-
Let \( C \subseteq \mathbb{R}^2 \) be a convex figure. Given a point \( P \in C \), let \( n(P) \) be the number of chords for which \( P \) is a midpoint. For instance, if \( C \) is a disk, any point \( P \in C \) satisfies \( n(P)=0 \) (if the point \( P \) is on the circle), \( n(P) = \infty \) (if the point \( P \) is the center of the disk), or \( n(P)=1 \) for any other point in the interior of \( C \).
- Are there convex sets that contain points \( P \) with \( n(P)=2 \)? If so, sketch an example.
- Are there convex sets that contain points \( P \) with \( n(P)=m \) for any \( m \geq 3 \)? If so, sketch and example for \( m=3 \).
- Determine whether the given functions are convex, concave, strictly convex or strictly concave on the specified domains:
- \( f(x) = \log(x) \) on \( (0,\infty). \)
- \( f(x) = e^{-x} \) on \( \mathbb{R}. \)
- \( f(x) = \lvert x \rvert \) on \( [-1,1]. \)
- \( f(x) = \lvert x^3 \rvert \) on \( \mathbb{R}. \)
- \( f(x,y) = 5x^2+2xy+y^2-x+2x+3 \) on \( \mathbb{R}^2. \)
- \( f(x,y) = x^2/2+3y^2/2+\sqrt{3}xy \) on \( \mathbb{R}^2. \)
- \( f(x,y) = 4e^{3x-y}+5e^{x^2+y^2} \) on \( \mathbb{R}^2. \)
- \( f(x,y,z) = x^{1/2} + y^{1/3} + z^{1/5} \) on \( C = \{ (x,y,z) : x>0, y>0, z>0 \}. \)
-
Sketch the epigraph of the following functions
- \( f(x) = e^x. \)
- \( f(x,y)=x^2+y^2. \)
-
For the following optimization problems, state whether existence of a solution is guaranteed:
- \( f(x) = \dfrac{1+x}{x} \) over \( [1,\infty) \)
- \( f(x) = 1/x \) over \( [1,2) \)
- The following piecewise function over \( [1,2] \)
-
Use the Principal Minor Criteria to determine—if possible—the nature of the critical points of the following functions:
- \( f(x,y) = x^3+y^3-3x-12y+20. \)
- \( f(x,y,z) = 3x^2+2y^2+2z^2+2xy+2yz+2xz. \)
- \( f(x,y,z) = x^2+y^2+z^2-4xy. \)
- \( f(x,y) = x^4+y^4-x^2-y^2+1. \)
- \( f(x,y) = 12x^3+36xy-2y^3+9y^2-72x+60y+5. \)
-
Show that the function \( f(x,y,z) = e^{x^2+y^2+z^2}-x^4-y^6-z^6 \) has a global minimum on \( \mathbb{R}^3. \)
-
Consider the function \( f(x,y) = x^3 + e^{3y} -3xe^y. \) Show that \( f \) has exactly one critical point, and that this point is a local minimum but not a global minimum.
-
Let \( f(x,y) = -\log(1-x-y)-\log x -\log y. \)
- Find the domain \( D \) of \( f. \)
- Prove that \( D \) is a convex set.
- Prove that \( f \) is strictly convex on \( D. \)
- Find the strict global minimum.
- Find local and global minima in \( \mathbb{R}^3 \) (if they exist) for the function \( f(x,y) = e^{x+z-y}+e^{y-x-z}. \)